-
Notifications
You must be signed in to change notification settings - Fork 7
/
PWPLV.m
193 lines (184 loc) · 6.8 KB
/
PWPLV.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
function pwplv = PWPLV(eeg, fs, onset_time, varargin)
%
% pwplv = PWPLV(eeg, fs, onset_time)
% pwplv = PWPLV(eeg, fs, onset_time, freq_rng, duration, pertnum, plot_flag)
%
% *************************************************************************
% * Pair-wise PLV dynamics estimated within 1sec time-steps for any *
% * arbitrary time range and all electrode pairs *
% *************************************************************************
%
% Usage: pwplv = PWPLV(eeg, fs, onset_time)
% pwplv = PWPLV(eeg, fs, onset_time, freq_rng, duration, pertnum, plot_flag)
% inputs:
% 'eeg': cell array containing eeg channels of interest from all
% trials
% 'fs': sampling frequency (Hz)
% 'onset_time': vector of onset times (Seconds)
% (opt) 'freq_rng': [a, b] form double vector where 'a' and 'b' are
% edges of the frequency band of interest (default:
% freq_rng = [12, 32])
% (opt) 'duration': [-a, b] form double vector where 'a' is time required
% duration prior to movement onset and 'b' is the required
% time duration after the movement onset in seconds (
% default: duration = [-3, 2])
% (opt) 'pertnum': number of perturbations while using the TFS phase
% estimation method (default: pertnum = 100)
% (opt) 'plot_flag': decide to visualize the results or not. options:
% 'plot', 'noplot' (default: plot_flag = 'plot')
% outputs:
% 'pwplv': estimated pairwise phase locking value (PLV) between
% all possible electrode pairs
% Note:
% an empty bracket [] Must be assigned to not-specified values
%
% This program is provided by ESMAEIL SERAJ. Please make sure to cite BOTH
% the original studies and the User Manual to help others find these items.
%
% Authors:
% Esmaeil Seraj, Karthiga Mahalingam
% Websites:
% https://github.com/EsiSeraj/ERP_Connectivity_EMG_Analysis
% http://oset.ir/category.php?dir=Tools
%
% Copyright (C) <2018> <ESMAEIL SERAJ ([email protected])>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/> or
% write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
% Floor, Boston, MA 02110-1301, USA.
%
%% Checking inputs and assigning default values
if nargin < 3
error('***wrong number of input arguments. Refer to Manual for details***')
elseif nargin == 3
freq_rng = [12, 32];
duration = [-3, 2];
pertnum = 100;
plot_flag = 'plot';
elseif nargin > 3
if size(varargin, 2) ~= 4
error('***an empty bracket [] Must be assigned to not-specified values***')
else
if isempty(varargin{1})
freq_rng = [12, 32];
else
freq_rng = varargin{1};
end
if isempty(varargin{2})
duration = [-3, 2];
else
duration = varargin{2};
end
if isempty(varargin{3})
pertnum = 100;
else
pertnum = varargin{3};
end
if isempty(varargin{4})
plot_flag = 'plot';
else
plot_flag = varargin{4};
end
end
end
if (~(isscalar(fs) && isscalar(onset_time) && isscalar(pertnum)))
error('***fs, trigger time and number of perturbations have to be scalars***')
end
if(isscalar(freq_rng) || isscalar(duration))
error('***frequency range and duration of interest have to be double vectors in form of [a, b]. Refer to manual for details***')
end
if ~iscell(eeg)
error('***input EEG signal has to be stored in a cell array. Refer to manual for details***')
end
if ischar(plot_flag)
if (~(strcmp(plot_flag, 'plot') || strcmp(plot_flag, 'noplot')))
error('***typo in your specified plot_flag string***')
end
else
error('***plot_flag has to be a string***')
end
%% initialization and parameter specification
f0 = (freq_rng(2)+freq_rng(1))/2; % center frequency for filter
bw = freq_rng(2)-freq_rng(1); % frequency bandwidth
time_steps = (duration(1):duration(2)).*fs; % time steps for MSC measures
%% pairwise phase locking value (PLV) estimation within time steps
% check if parallel pool has been created
poolsize = 4; % if you have more cores available GOOD FOR YOU, change it here
p = gcp('nocreate'); % If no pool, do not create new one
if isempty(p)
parpool(poolsize)
end
onset_sampl = onset_time*fs;
plv_gen = cell(1, length(eeg));
for i=1:length(eeg)
bp_eeg = eeg{i};
[m, ~] = size(bp_eeg);
phase_eeg = zeros(size(bp_eeg));
% phase estimation by TFP method
parfor ii=1:m
[phase_eeg(ii, :), ~, ~, ~] = phase_est(bp_eeg(ii, :), fs, f0, bw, pertnum);
end
% PLV estimation
PLV_all = cell(1, length(time_steps)-1);
for k=1:length(time_steps)-1
time_vec = onset_sampl+time_steps(k):onset_sampl+time_steps(k+1);
plv = zeros(m);
for j=1:m
for c=1:m
plv(j, c) = PLV_PhaseSeq(phase_eeg(j, time_vec), phase_eeg(c, time_vec));
end
end
PLV_all{k} = plv;
end
plv_gen{i} = PLV_all;
end
% averaging PLV measures across trials
pwplv = cell(1, length(time_steps)-1);
for i=1:length(time_steps)-1
sum_plv = zeros(m);
for j=1:length(eeg)
sum_plv = sum_plv + plv_gen{j}{i};
end
mean_plv = sum_plv/length(eeg);
pwplv{i} = mean_plv;
end
%% visualizing the results
if (strcmp('plot', plot_flag))
figure
L = length(pwplv);
switch L
case {1, 2, 3}
ind1 = 1;
ind2 = L;
case {4}
ind1 = 2;
ind2 = 2;
case {5, 6}
ind1 = 2;
ind2 = 3;
case {7, 8, 9}
ind1 = 3;
ind2 = 3;
end
for i=1:length(pwplv)
subplot(ind1, ind2, i)
contourf(pwplv{i}, 8)
colormap jet
xlabel(sprintf('(%d) to (%d) Sec', time_steps(i)/fs, time_steps(i+1)/fs));
ylabel(sprintf('Pairwise PLV (%d-%dHz)', freq_rng(1), freq_rng(2)))
end
elseif (strcmp('noplot', plot_flag))
warning('Result visualization is OFF, change the setting if you wish to visualize the connectivity results!!')
end
end