-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtuning_model.py
160 lines (128 loc) · 5.37 KB
/
tuning_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import torch
import torchvision
import matplotlib.pyplot as plt
from time import time
from torchvision import datasets, transforms
from torch import nn, optim
import os
import copy
from torch.optim import lr_scheduler
import cv2
data_dir = 'printed_digit'
#load dataset
# dataset = []
# for i in range(10):
# for d in os.listdir("printed_digit/{}".format(i)):
# t_img = cv2.imread("printed_digit/{}".format(i)+"/"+d)
# t_img = cv2.cvtColor(t_img,cv2.COLOR_BGR2GRAY)
# dataset.append((t_img, i))
data_transforms = {
'train': transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))]),
'val': transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
}
# train_size = int(0.8 * len(dataset))
# test_size = len(dataset) - train_size
# train, val = torch.utils.data.random_split(dataset, [train_size, test_size])
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
#class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
input_size = 784 # 28 * 28 input image size
hidden_sizes = [128, 64]
output_size = 10
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.model = nn.Sequential(
nn.Linear(input_size, hidden_sizes[0]),
nn.ReLU(),
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
nn.ReLU()
)
self.last_layer = nn.Linear(hidden_sizes[1], output_size)
self.soft_max = nn.LogSoftmax(dim=1)
def forward(self, x):
logits = self.model(x)
logits = self.last_layer(logits)
logits = self.soft_max(logits)
return logits
def train_model(model, criterion, optimizer, scheduler, num_epochs=50):
since = time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
inputs = inputs[:, 0, ...].reshape(-1, 784)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
torch.save({
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': criterion
}
, 'transfer-ce-sgd-2.pt')
print()
time_elapsed = time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# load best model weights
model.load_state_dict(best_model_wts)
return model
model_dir = 'mnist1-ce-sgd-2.pt'
model_ft = Net()
model_ft = torch.load(model_dir)
num_ftrs = 64 # how to not hardcode this? what is it
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model_ft.fc = nn.Linear(num_ftrs, 10)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)