-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_data.py
executable file
·83 lines (77 loc) · 2.34 KB
/
build_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Filename: build_data.py
build data for training
"""
import itertools
import glob
import numpy as np
import ACSF
params={
"etaG2": [1,2,3],
"rmin":0.5,
"rmax":6.5,
"r_s": [1.0],
"kappa":[2.5,8.5],
"labd": [1.0, -1.0],
"etaG4": [1],
"zeta": [1, 2]
}
"""
mol = [['O', '-0.005703', '0.385159', '-0.000000'],
['H', '-0.796078', '-0.194675', '-0.000000'],
['H', '0.801781', '-0.190484', '0.000000']]
mol1 = [['O', '-0.005703', '0.385159', '-0.000000'],
['H', '-0.796078', '-0.194675', '-0.000000'],
['H', '0.801781', '-0.190484', '0.000000'],
['O', '-0.005703', '0.900000', '-0.000000']]
"""
def acsf(mol):
"""
define mol as molecule
"""
symmmol=[]
for atom_i in range(len(mol)):
G2=[]
for eta in params["etaG2"]:
g2=[]
for r_s in params["r_s"]:
for atom_j in range(len(mol)):
if atom_i != atom_j:
g2.append(ACSF.G2(mol[atom_i][1:],mol[atom_j][1:],params["rmin"],params["rmax"],eta,r_s))
G2.append(sum(g2))
#print(len(G2_data))
G4=[]
for labd in params["labd"]:
for zeta in params["zeta"]:
for eta in params["etaG4"]:
g4=[]
mol_index =[s for s in range(len(mol))]
mol_index.remove(atom_i)
Tjk = list(itertools.combinations(mol_index,2))
for atom_j,atom_k in Tjk:
g4.append(ACSF.G4(mol[atom_i][1:],mol[atom_j][1:],mol[atom_k][1:],zeta,labd,eta,params["rmin"],params["rmax"]))
G4.append(sum(g4))
symmmol.append(G2+G4)
return symmmol
path = glob.glob("systems/group*/")
Tot=[]
Tot1=[]
for i in path:
atom=np.load(i+"/atom.npy")
energy=np.load(i+"/energy.npy")
for test in atom:
mol1=[]
D=test[:,1:]*0.5291772
mol2 = test.tolist()
for s in mol2:
s=[str(i) for i in s]
mol1.append(s)
symm=acsf(mol1)
print(symm)
Tot.append(symm)
Tot1.append(energy)
Tot1=np.concatenate((Tot1[0],Tot1[1],Tot1[2],Tot1[3]))
np.save("symm.npy", np.asarray(Tot))
print(np.asarray(Tot).shape)
np.save("energy.npy",np.array(Tot1))
#print(np.asarray(Tot)[0])