-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnapshotsurfer.py
463 lines (371 loc) · 19.5 KB
/
Snapshotsurfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#Snapshot diver allows you to look at a DAO's elections on snapshot to see how decentralized they are. Bugs? Ping me on Twitter @edgecaser.
from datetime import datetime
import time
from subgrounds.subgraph import SyntheticField, FieldPath
from subgrounds.subgrounds import Subgrounds
import pandas as pd
import os as os
import duckdb as db
import seaborn as sns
import matplotlib.pyplot as plt
import streamlit as st
st.set_page_config(layout="wide")
st.markdown("""
<style>
.bigger-font {
font-size:18px !important;
}
.biggest-font {
font-size:20px !important;
}
</style>
""", unsafe_allow_html=True)
st.write('# Snapshot Surfer')
st.write('## By @Edgecaser')
st.write('Version 2')
st.markdown('<p class="bigger-font">This tool will help you view how decentralized a DAO\'s voting power is.</p>', unsafe_allow_html=True)
st.markdown('<p class="bigger-font">DAO stands for Decentralized Autonomous Organization, a bottoms-up team or organization. These are run by votes recorded on the Blockchain.</p>', unsafe_allow_html=True)
st.markdown('<p class="bigger-font">Some DAOs voting power has a 1:1 correlation with their token holdings. Others use different schemes that distribute voting power in different ways, all the way down to one-wallet-one-vote. </p>', unsafe_allow_html=True)
st.markdown('<p class="bigger-font"> When a few people hold a lot of voting power, a small minority drives the result of any proposal on Snapshot. This is not good or bad. There\'s examples of successful organizations with all kinds of power distribution schemes.</p>', unsafe_allow_html=True)
st.markdown('<p class="bigger-font"> This tool helps illustrate how decentralized voting power is in any DAO in Snapshot It will pull down all proposals data and analyze the distribution of power. It will download the data to the folder of your choice </p>', unsafe_allow_html=True)
st.markdown('<p class="bigger-font"> If you are interested in analyzing a single election in more detail, I recommend you visit Snapshot Diver </p>', unsafe_allow_html=True)
st.markdown('[Snapshot Diver](https://edgecaser-snapshotsurfer-snapshotdiver-jilc2t.streamlitapp.com/)')
st.write('### Instructions')
st.markdown('<p class="bigger-font"> Trolls happen. Some DAOs are bombed with fake proposals that gather a handful of voters. This filter lets you ignore them in the analysis (but will be kept in the downloaded data). I find 20 is good enough for small DAOs. For larger DAOs I recommend values of 50 or more.</p>', unsafe_allow_html=True)
filter = st.slider(
'Only choose proposals that had at least these many voters:',
int(0), 200, 20, 10)
st.markdown(
'<p class="bigger-font">Enter the DAO you want to study below by entering its namespace in Snapshot. For example, OlympusDAO has a url like https://snapshot.org/#/olympusdao.eth so its userspace is olympusdao.eth.</p>',
unsafe_allow_html=True)
st.write('')
spacename = ''
spacename = st.text_input('Where to pull from? Type your selection then press START',help='Which space, eg: curve.eth')
daysLimitInput =''
#daysLimit = 10
daysLimitInput = ''
daysLimit = st.text_input('How many days in the past do you want to go?',help='Snapshotsurfer will pull data going this many days back')
#daysLimit = int(daysLimitInput)
if st.button('START'):
sg = Subgrounds()
snapshot = sg.load_api('https://hub.snapshot.org/graphql')
snapshot.Proposal.datetime = SyntheticField(
lambda timestamp: str(datetime.fromtimestamp(timestamp)),
SyntheticField.STRING,
snapshot.Proposal.end,
)
proposals = snapshot.Query.proposals(
orderBy='created',
orderDirection='desc',
first=1000,
where=[
snapshot.Proposal.space == spacename, ##'fuse.eth',
snapshot.Proposal.state == 'closed'
##snapshot.Proposal.title == 'OIP-18: Reward rate framework and reduction',
]
)
st.write('Let\'s get started! Pulling from: ', spacename, ':sunglasses:')
proposals_snapshots = sg.query_df([
proposals.title,
proposals.created,
proposals.id,
proposals.start,
proposals.end,
proposals.votes
])
proposals_snapshots['createdDate'] = (pd.to_datetime(proposals_snapshots['proposals_created'], unit='s'))
proposals_snapshots['startDate'] = (pd.to_datetime(proposals_snapshots['proposals_start'], unit='s'))
proposals_snapshots['endDate'] = (pd.to_datetime(proposals_snapshots['proposals_end'], unit='s'))
total_snapshots = len(proposals_snapshots)
proposals_choices = sg.query(proposals.choices)
proposals_choices = pd.DataFrame(proposals_choices)
olympus_governance_view = pd.DataFrame()
olympus_governance_view = pd.concat([proposals_snapshots, proposals_choices], axis=1)
##let's view the output just to make sure
olympus_governance_view.head(5)
#let's remove duplicate rows the easy way, and add the name of the DAO to the table
olympus_governance_view.drop_duplicates()
#olympus_governance_view.insert(0, 'DAO', spacename)
st.write("Sample list of Proposals")
st.write(olympus_governance_view.head(10))
@st.cache
def convert_df(df):
return df.to_csv().encode('utf-8')
csv = convert_df(olympus_governance_view)
st.download_button(
"Press to download list of Proposals",
csv,
"olympus_governance_view_clean.csv",
"text/csv",
key='download-csv'
)
st.write('Pulling vote records...')
mybar = st.progress(0)
voteTicker = 0
totalProposals = len(olympus_governance_view)
voteslist = pd.DataFrame()
votesDb = pd.DataFrame()
voteListLength = 1000
datediff = 0
now = 0
daysAgo = 0
# daysLimit = 90
datediff = 0
epochlimit = (90 * 86400)
ut = time.time()
limitTimestamp = int(ut - epochlimit)
limitDate = datetime.fromtimestamp(limitTimestamp)
limitDate = limitDate.strftime('%m-%d-%Y')
exit = False
while int(datediff) < int(daysLimit):
proposal_id = olympus_governance_view.iloc[voteTicker, 2]
skipValue = (voteTicker) * (1000)
vote_tracker = snapshot.Query.votes(
# orderBy = 'created',
# orderDirection='asc',
first=1000,
where=[
snapshot.Vote.proposal == proposal_id
# snapshot.Vote.created > limitTimestamp
]
)
voting_snapshots = sg.query_df([
vote_tracker.id,
vote_tracker.voter,
vote_tracker.created,
vote_tracker.choice,
vote_tracker.vp
])
voting_snapshots['proposals_id'] = olympus_governance_view.iloc[voteTicker, 2]
# voteDate = votesDb.iat[voteTicker,4]
votesDb = pd.concat([voting_snapshots, votesDb])
votesDb['createdDate'] = (pd.to_datetime(votesDb['votes_created'], unit='s'))
then = votesDb.iat[voteTicker, 6]
now = datetime.now()
delta = now - then
datediff = delta.days
votesDbLength = len(votesDb)
voteListLength = len(voting_snapshots)
recordTimestamp1 = votesDb.iat[voteTicker, 2]
recordTimestamp = datetime.fromtimestamp(recordTimestamp1)
now = (int(datetime.utcnow().timestamp()))
# datediff=abs(int(now) - recordTimestamp1)
#print('ticker', voteTicker, 'proposal', proposal_id, 'records:', voteListLength, 'DB size:', votesDbLength,' -days ago:', datediff, ' -date', then, ' -exit?', exit)
# print(proposal_id, voteDate, datediff)
#chartprogress = voteTicker/totalProposals
##clear_output(wait=True)
#mybar.progress(chartprogress)
voteTicker = voteTicker + 1
#votesDb.drop_duplicates
votesDb.rename(columns={"createdDate": "voteDate"}, inplace=True)
votesDb.drop_duplicates(inplace=True)
votesDb.drop_duplicates()
votesDb.head(10000)
st.write('Sample output: Vote records',votesDb.head(10))
@st.cache
def convert_df(df):
return df.to_csv().encode('utf-8')
csv = convert_df(votesDb)
st.download_button(
"Press to download vote records",
csv,
"voting_snapshots_list.csv",
"text/csv",
key='download-csv'
)
governance_data = pd.DataFrame()
#I join these two tables to create my charts as it makes life easier. We are going to build the charts here now, so here we go
governance_data = pd.merge(votesDb, olympus_governance_view, how='inner', left_on='proposals_id',
right_on='proposals_id')
st.write('sample output: governance data', governance_data.head(10))
@st.cache
def convert_df(df):
return df.to_csv().encode('utf-8')
csv = convert_df(governance_data)
st.download_button(
"Press to download joined governance data",
csv,
"governance_data.csv",
"text/csv",
key='download-csv'
)
crunch_data = db.query("select "
"A.proposals_id"
" ,A.startDate "
" ,A.proposals_title "
" ,A.votes_voter "
" ,A.votes_vp "
" ,A.voteDate "
",sum(A.votes_vp) over (Partition by proposals_id order by votes_vp desc, voteDate asc) as cumulative_vp "
",sum(A.votes_vp) over (Partition by proposals_id) as total_vp "
",(votes_vp::decimal/sum(votes_vp::decimal) over (Partition by proposals_id)) as percentage_of_total_vp "
",((sum(A.votes_vp) over (Partition by proposals_id order by votes_vp desc, voteDate asc))::decimal/sum(votes_vp::decimal) over (Partition by proposals_id)) as cum_percentage_of_total_vp "
",round((sum(A.votes_vp) over (Partition by proposals_id order by votes_vp desc, voteDate asc))::decimal/sum(votes_vp::decimal) over (Partition by proposals_id)) as cum_percentage_of_total_vp_stepped "
",row_number() over (Partition by proposals_id order by votes_vp desc, voteDate asc) as proposal_voter_rank "
",(count(*) over (Partition by proposals_id))::decimal total_voters "
",(count(*) over (Partition by proposals_id order by votes_vp desc, voteDate asc))::decimal/(count(*) over (Partition by proposals_id))::decimal percentage_voters_counted "
",round(100*(count(*) over (Partition by proposals_id order by votes_vp desc, voteDate asc))::decimal/(count(*) over (Partition by proposals_id)))::decimal percentage_voters_counted_stepped "
"from "
" governance_data A "
# "where to_timestamp((votes_Created::bigint))<'2023-01-01' "
""
"Group by "
"A.proposals_id"
" ,A.startDate "
" ,A.proposals_title "
" ,A.votes_voter "
" ,A.votes_vp "
" ,A.voteDate "
""
"Order by "
" A.startDate asc "
" , votes_vp desc "
" , voteDate asc"
"").df()
crunch_data.insert(0, 'DAO', spacename)
#leaders = crunch_data.loc[crunch_data['proposal_voter_rank'] <= 3]
#leader_count = leaders.votes_voter.nunique()
leader_ranks = db.query("with leader_ranks as "
"(Select distinct "
" B.proposals_id"
" ,B.votes_voter"
" ,B.proposal_voter_rank "
" ,(B.proposal_voter_rank +1) as leader_rank "
"From "
" (select "
"proposals_id"
",votes_voter "
",votes_choice"
",votes_vp"
",votes_created "
",sum(votes_vp) over (Partition by proposals_id order by votes_vp desc, votes_created asc) as cumulative_vp"
",sum(votes_vp) over (Partition by proposals_id) as total_vp"
",(votes_vp::decimal/sum(votes_vp::decimal) over (Partition by proposals_id)) as percentage_of_total_vp "
",((sum(votes_vp) over (Partition by proposals_id order by votes_vp desc, votes_created asc))::decimal/sum(votes_vp::decimal) over (Partition by proposals_id)) as cum_percentage_of_total_vp "
" ,round((sum(votes_vp) over (Partition by proposals_id order by votes_vp desc, votes_created asc))::decimal/sum(votes_vp::decimal) over (Partition by proposals_id)) as cum_percentage_of_total_vp_stepped "
",row_number() over (Partition by proposals_id order by votes_vp desc, votes_created asc) as proposal_voter_rank "
",count(votes_voter) over (Partition by proposals_id order by votes_vp desc, votes_created asc) total_voters "
",(count(*) over (Partition by proposals_id order by votes_vp desc, votes_created asc))::decimal/(count(*) over (Partition by proposals_id))::decimal percentage_voters_counted "
",round(100*(count(*) over (Partition by proposals_id order by votes_vp desc, votes_created asc))::decimal/(count(*) over (Partition by proposals_id)))::decimal percentage_voters_counted_stepped "
"from "
" governance_data "
""
"Group by "
" proposals_id"
" ,votes_voter"
" ,votes_choice"
" , votes_vp "
" , votes_created "
""
"Order by "
" proposals_id "
" ,votes_vp desc "
" , votes_created asc) B "
"where "
" B.cum_percentage_of_total_vp<=0.5) "
""
"Select "
" *"
"From crunch_data A"
" Join leader_ranks B on A.proposal_voter_rank = B.leader_rank and A.proposals_id = B.proposals_id"
""
).df()
#st.write(leader_ranks)
dao_members = crunch_data.groupby('DAO').votes_voter.nunique()
dao_members = dao_members.iloc[0]
leader_count =leader_ranks.votes_voter.nunique()
elite = round((leader_count)/(dao_members),4)
#$print(dao_members, "{0:.2%}".format(elite))
st.write('Sample Stats data')
st.write(crunch_data.head(10))
##spit out the file!
crunch_data = crunch_data.loc[crunch_data['total_voters']>filter]
@st.cache
def convert_df(df):
return df.to_csv().encode('utf-8')
csv = convert_df(crunch_data)
st.download_button(
"Press to download Stats data",
csv,
"aggregated_data.csv",
"text/csv",
key='download-csv'
)
curve_data = db.query(
"select "
" percentage_voters_counted_stepped "
" , avg(percentage_voters_counted) avg_percentage_voters_counted "
" , avg(cum_percentage_of_total_vp) avg_percentage_of_total_vp "
" ,'Grand Average' as proposal "
"from crunch_data "
" group by 1 "
"UNION ALL "
"SELECT "
" percentage_voters_counted_stepped "
" ,percentage_voters_counted "
" ,cum_percentage_of_total_vp "
" ,proposals_id "
"FROM crunch_data "
).df()
@st.cache
def convert_df(df):
return df.to_csv().encode('utf-8')
csv = convert_df(curve_data)
st.download_button(
"Press to download aggregate curve data",
csv,
"aggregated_data.csv",
"text/csv",
key='download-csv'
)
plt.rc("figure", figsize=(40, 20))
#sns.set_style("whitegrid")
plt.rc("font", size=25)
data_means = crunch_data.groupby("percentage_voters_counted_stepped")["cum_percentage_of_total_vp","percentage_voters_counted"].agg("mean").reset_index()
##print(data_means)
plot_title = spacename + ' snapshots % of vote along population with Average as X'
fig = plt.figure(figsize=(30, 15))
#plt.rc("figure", figsize=(40, 20))
sns.set_style("whitegrid")
plt.rc("font", size=25)
data_means = crunch_data.groupby("percentage_voters_counted_stepped")[
"cum_percentage_of_total_vp", "percentage_voters_counted"].agg("mean").reset_index()
##print(data_means)
p50 = db.query("select min(percentage_voters_counted) "
"from data_means where cum_percentage_of_total_vp>=0.5 ").df()
p50_val = p50.iloc[0, 0]
p50display = round(100 * (p50.iloc[0, 0]), 2)
st.write('### On average, a proposal at ', ("{0}".format(spacename)), 'takes ', ("{0:.2%}".format(p50_val)),
'of the voting population to accumulate half or more of all the votes.')
st.write('### A total of ', ("{0}".format(leader_count)), 'addresses have driven the result of all proposals at',
spacename, '.')
st.write('### That\'s', ("{0:.2%}".format(elite)), 'of all', ("{0}".format(dao_members)),
'voters the DAO has had in the last',("{0}".format(daysLimit)),'days.')
st.write('### Let\'s visualize this: The chart below describes all proposals in', spacename,
'.The orange markers represent what percentage of the population it takes to reach a given percentage of voting power.')
plot_title = spacename + ' snapshots\' % of vote along population with Average as X'
ax = sns.scatterplot(data=crunch_data, hue="proposals_id", y="cum_percentage_of_total_vp",
x="percentage_voters_counted_stepped").set(title=plot_title, xlabel='% of voters',
ylabel='% of voting power')
chart = sns.scatterplot(data=data_means, x="percentage_voters_counted_stepped", y="cum_percentage_of_total_vp",
zorder=3, s=800, marker='X', color='orange')
plt.legend(bbox_to_anchor=(1.02, 0.99), loc='upper left', borderaxespad=0)
st.pyplot(fig)
voterCounts = db.query("Select"
" cast(startDate as date) as startDate "
",count(distinct votes_voter) as voters "
"From crunch_data "
"Group by 1").df()
#Second chart
fig = plt.figure(figsize=(30, 15))
#plt.rc("figure", figsize=(40, 20))
sns.set_style("whitegrid")
plt.rc("font", size=25)
plot_title = spacename + ': Voters per proposal'
chart = sns.barplot(data=voterCounts, x="startDate", y="voters", color='orange')
st.pyplot(fig)
st.markdown(
'<p class="bigger-font">All done. Enjoy! Feel free to enter another space name to pull more data.</p>',
unsafe_allow_html=True)
# The chart above shows what % of all possible votes has been cast (Y axis) as each incremental percent of the voting population casts their vote (X axis). Each line is a Proposal and has a unique color, so that a dot on each percent point represents what % of total voting power was accumulated by that group. The color represents which vote was cast.
# The Orange X shows the average % of power accumulated across all elections.