-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_CheXpert_LM.py
208 lines (173 loc) · 8.5 KB
/
run_CheXpert_LM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import argparse
import numpy as np
import torch
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from utils import *
from Protopnet import ProtoPNet
from train_or_test import *
from push_prot_chex import *
from parameters import *
seed = 12
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser()
parser.add_argument("--num_classes", '-nc', default=2, required=False, help="Number of classes")
parser.add_argument("--epochs", '-e', type=str, required=True, help="Number of training epochs")
parser.add_argument("--class_name", '-c', type=str, required=True, help="Name of a class") # cardiomegaly or effusion
parser.add_argument("--distribute", '-d', action='store_true', help="Set for distributing the data among the clients")
parser.add_argument("--num_clients", '-ncl', default=4, required=False, help="Number of clients")
parser.add_argument("--client_to_train", '-t', type=str, required=True, help="Number of the client to train") # please start counting from 0
parser.add_argument("--biased", '-b', action='store_true', help="Set for adding bias")
args = parser.parse_args()
num_classes = int(args.num_classes)
shape0 = 10*num_classes
prototype_shape = (shape0, 128, 1, 1)
num_clients = int(args.num_clients)
normalize = transforms.Normalize(mean=mean,
std=std)
num_train_epoch = int(args.epochs)
num_warm_epoch = 5
push_epochs = np.linspace(10, 100, 10)[:-1]
push_start = 10
if not os.path.exists('pretrained_models'):
os.mkdir('pretrained_models')
if not os.path.exists('ppnet_chest'):
os.mkdir('ppnet_chest')
if not os.path.exists('prot_chest'):
os.mkdir('prot_chest')
if __name__ == '__main__':
if args.distribute:
data_path = args.class_name + '/'
train_dir = data_path + 'train/'
test_dir = data_path + 'test/'
train_push_dir = data_path + 'push/'
dir_names = os.listdir(train_dir)
for client in range(num_clients):
os.mkdir(f'client_{client}')
os.mkdir(f'client_{client}/' + 'train/')
os.mkdir(f'client_{client}/' + 'push/')
os.mkdir(f'client_{client}/' + 'test/')
for class_name in dir_names:
os.mkdir(f'client_{client}/'+ 'train/' + class_name)
os.mkdir(f'client_{client}/'+ 'push/' + class_name)
os.mkdir(f'client_{client}/'+ 'test/' + class_name)
print('Train data is being distributed')
distribute_data(train_dir, seed, num_clients)
print('Train push data is being distributed')
distribute_data(train_push_dir, seed, num_clients)
print('Test data is being distributed')
distribute_data(test_dir, seed, num_clients)
data_path = 'client_' + args.client_to_train + '/'
# Add a synthetic bias to one client's dataset
if args.biased and args.class_name == 'cardiomegaly':
num_client = 3 # we always add bias to the 4th client
unicode = '\U0001F42D'
bias_folder = 'positive'
size = 35
percent = 100
adding_emoji(num_client, unicode, bias_folder, size, percent)
elif args.biased and args.class_name == 'effusion':
data_path = 'drains/'
train_dir = data_path + 'train/'
test_dir = data_path + 'test/'
train_push_dir = data_path + 'push/'
# train set
train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True,
num_workers=2, pin_memory=False)
# push set
train_push_dataset = datasets.ImageFolder(
train_push_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
]))
train_push_loader = torch.utils.data.DataLoader(
train_push_dataset, batch_size=train_push_batch_size, shuffle=False,
num_workers=2, pin_memory=False)
# test set
test_dataset = datasets.ImageFolder(
test_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
normalize,
]))
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=test_batch_size, shuffle=False,
num_workers=2, pin_memory=False)
# Centralized training on a local set
# define a model
ppnet = ProtoPNet.construct_PPNet(base_architecture='densenet121',
pretrained=True,
img_size=img_size,
prot_shape=prototype_shape,
num_classes=num_classes,
prototype_activation_function=prototype_activation_function,
add_on_layers_type = 'regular')
ppnet = ppnet.to(device)
model = torch.nn.DataParallel(ppnet)
joint_optimizer_specs = \
[{'params': ppnet.features.parameters(), 'lr': joint_optimizer_lrs['features'], 'weight_decay': 1e-3}, # bias are now also being regularized
{'params': ppnet.add_on_layers.parameters(), 'lr': joint_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': ppnet.prototype_vectors, 'lr': joint_optimizer_lrs['prototype_vectors']},
]
joint_optimizer = torch.optim.Adam(joint_optimizer_specs)
# joint_lr_scheduler = torch.optim.lr_scheduler.StepLR(joint_optimizer, step_size=joint_lr_step_size, gamma=0.1)
warm_optimizer_specs = \
[{'params': ppnet.add_on_layers.parameters(), 'lr': warm_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': ppnet.prototype_vectors, 'lr': warm_optimizer_lrs['prototype_vectors']},
]
warm_optimizer = torch.optim.Adam(warm_optimizer_specs)
last_layer_optimizer_specs = [{'params': ppnet.last_layer.parameters(), 'lr': last_layer_optimizer_lr}]
last_layer_optimizer = torch.optim.Adam(last_layer_optimizer_specs)
# Training
for epoch in range(num_train_epoch):
print('epoch', epoch)
if epoch < num_warm_epoch:
mode(model, warm=True)
model.train()
correct_ratio, loss = train_or_test(model, train_loader, warm_optimizer, class_specific=True)
else:
mode(model, joint=True)
model.train()
# joint_lr_scheduler.step()
_, loss = train_or_test(model, train_loader, joint_optimizer, class_specific=True)
model.eval()
print('---test---')
acc, loss_test = train_or_test(model, test_loader, class_specific=True)
save_model_w_condition(model=ppnet, model_dir=model_dir, model_name=str(epoch) + 'nopush', acc=acc, target_acc=0.60)
if epoch >= push_start and epoch in push_epochs:
push_prototypes(
train_push_loader, # pytorch dataloader (must be unnormalized in [0,1])
prototype_network_parallel=model, # pytorch network with prototype_vectors
class_specific=True,
preprocess_input_function=preprocess_input_function, # normalize if needed
prototype_layer_stride=1,
root_dir_for_saving_prototypes=root_dir_for_saving_prototypes, # if not None, prototypes will be saved here
epoch_number=epoch, # if not provided, prototypes saved previously will be overwritten
prototype_img_filename_prefix=prototype_img_filename_prefix,
prototype_self_act_filename_prefix=prototype_self_act_filename_prefix,
proto_bound_boxes_filename_prefix=proto_bound_boxes_filename_prefix,
save_prototype_class_identity=True)
model.eval()
acc, loss_test = train_or_test(model, test_loader, class_specific=True)
if prototype_activation_function != 'linear':
mode(model, last=True)
for i in range(12):
print('iteration: \t{0}'.format(i))
_, loss = train_or_test(model, train_loader, last_layer_optimizer, class_specific=True)
acc, loss_test = train_or_test(model, test_loader, class_specific=True)
save_model_w_condition(model=ppnet, model_dir=model_dir, model_name=str(epoch) + '_' + str(i) + 'push', acc=acc, target_acc=0.60)