-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcsp5-final.cpp
579 lines (537 loc) · 16 KB
/
csp5-final.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
#if 0
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#endif
#pragma GCC optimize ("Ofast")
#pragma GCC target ("avx2")
#include <immintrin.h>
#include <algorithm>
#include <cstdio>
#include <utility>
using namespace std;
typedef unsigned char U8;
typedef int I32;
typedef unsigned int U32;
typedef long long I64;
typedef unsigned long long U64;
#define MaxBuf 2097152
#define MaxM 100001
#define Mod 998244353
#define G 3
#define GInv 332748118
#define MaxExp 19
#define MaxLen 524288
#define BmM 288737297
#define BmW 29
char IBuf[MaxBuf];
char OBuf[MaxBuf];
char* IPtr = IBuf;
char* OPtr = OBuf;
inline void FetchAll() {
fread(IBuf, 1, MaxBuf, stdin);
}
inline void FlushAll() {
fwrite(OBuf, 1, (size_t) (OPtr - OBuf), stdout);
}
template<class Int>
inline Int ReadU() {
while (*IPtr < '0')
++IPtr;
Int res = (Int) (*IPtr++ & 0x0f);
while (*IPtr >= '0')
res = res * 10 + (Int) (*IPtr++ & 0x0f);
return res;
}
template<class Int>
inline void PrintU(Int val) {
if (!val)
*OPtr++ = '0';
else {
int cnt = 0;
while (val) {
OPtr[cnt++] = (char) ((val % 10) | '0');
val /= 10;
}
reverse(OPtr, OPtr + cnt);
OPtr += cnt;
}
*OPtr++ = '\n';
}
U32 GcdEx(U32 A, U32 B, I32& x, I32& y) {
if (!B) {
x = 1;
y = 0;
return A;
}
U32 d = GcdEx(B, A % B, y, x);
y -= x * (I32) (A / B);
return d;
}
inline U32 MAdd(U32 A, U32 B) {
U32 res = A + B;
return res < Mod ? res : res - Mod;
}
inline U32 MSub(U32 A, U32 B) {
U32 res = A - B;
return A < B ? res + Mod : res;
}
inline U32 MMul(U32 A, U32 B) {
return (U32) ((U64) A * B % Mod);
}
inline U32 MPow(U32 A, U32 B) {
U32 res = 1;
while (B) {
if (B & 1)
res = MMul(res, A);
A = MMul(A, A);
B >>= 1;
}
return res;
}
inline U32 MInv(U32 N) {
I32 x, y;
GcdEx(N, Mod, x, y);
x %= Mod;
return (U32) (x < 0 ? x + Mod : x);
}
#define VLod(A) (_mm256_load_si256((const __m256i*) (A)))
#define VSto(A, v) (_mm256_store_si256((__m256i*) (A), v))
#define VEx0(v) (_mm256_shuffle_epi8(v, vm0))
#define VEx1(v) (_mm256_shuffle_epi8(v, vm1))
#define VIntlv(v0, v1) (_mm256_blend_epi32(v0, _mm256_shuffle_epi32(v1, 0xb1), 0xaa))
#define VAdd(va, vb, vt) ( \
vt = _mm256_add_epi32(va, vb), \
_mm256_min_epu32(_mm256_sub_epi32(vt, vm32), vt) \
)
#define VSub(va, vb, vt) ( \
vt = _mm256_sub_epi32(va, vb), \
_mm256_min_epu32(_mm256_add_epi32(vt, vm32), vt) \
)
#define VMul4(va0, va1, vb0, vb1, vt, vu, vv, vw) ( \
vt = _mm256_mul_epi32(va0, vb0), \
vu = _mm256_mul_epi32(va1, vb1), \
vv = _mm256_mul_epi32(_mm256_srli_epi64(_mm256_mul_epi32(_mm256_srli_epi64(vt, 29), vbmm), BmW), vm64), \
vw = _mm256_mul_epi32(_mm256_srli_epi64(_mm256_mul_epi32(_mm256_srli_epi64(vu, 29), vbmm), BmW), vm64), \
vt = VIntlv(vt, vu), \
vu = VIntlv(vv, vw), \
vt = _mm256_sub_epi32(vt, vu), \
_mm256_min_epu32(_mm256_min_epu32(vt, _mm256_add_epi32(vt, vm32)), _mm256_sub_epi32(vt, vm32)) \
)
#define VMul3(va, vb0, vb1, vt, vu, vv, vw) ( \
vt = VEx0(va), \
vu = VEx1(va), \
VMul4(vt, vu, vb0, vb1, vt, vu, vv, vw) \
)
#define VMul2(va, vb, vt, vu, vv, vw) ( \
vv = VEx0(vb), \
vw = VEx1(vb), \
VMul3(va, vv, vw, vt, vu, vv, vw) \
)
inline void VMul(U32* __restrict__ A, U32 Len, U32 W) {
if (Len < 8) {
for (U32 i = 0; i < Len; ++i)
A[i] = MMul(A[i], W);
return;
}
const __m256i vm32 = _mm256_set1_epi32(Mod);
const __m256i vm64 = _mm256_set1_epi64x(Mod);
const __m256i vbmm = _mm256_set1_epi64x(BmM);
const __m256i vm0 = _mm256_set_epi64x(
0x111111111b1a1918, 0x1111111113121110,
0x111111110b0a0908, 0x1111111103020100
);
const __m256i vm1 = _mm256_set_epi64x(
0x111111111f1e1d1c, 0x1111111117161514,
0x111111110f0e0d0c, 0x1111111107060504
);
__m256i vta, vtb, vtc, vtd;
__m256i vw = _mm256_set1_epi64x(W);
for (U32 i = 0; i < Len; i += 8) {
__m256i va = VLod(A + i);
__m256i vr = VMul3(va, vw, vw, vta, vtb, vtc, vtd);
VSto(A + i, vr);
}
}
inline void VMul(U32* __restrict__ A, const U32* __restrict__ B, U32 Len) {
if (Len < 8) {
for (U32 i = 0; i < Len; ++i)
A[i] = MMul(A[i], B[i]);
return;
}
const __m256i vm32 = _mm256_set1_epi32(Mod);
const __m256i vm64 = _mm256_set1_epi64x(Mod);
const __m256i vbmm = _mm256_set1_epi64x(BmM);
const __m256i vm0 = _mm256_set_epi64x(
0x111111111b1a1918, 0x1111111113121110,
0x111111110b0a0908, 0x1111111103020100
);
const __m256i vm1 = _mm256_set_epi64x(
0x111111111f1e1d1c, 0x1111111117161514,
0x111111110f0e0d0c, 0x1111111107060504
);
__m256i vta, vtb, vtc, vtd;
for (U32 i = 0; i < Len; i += 8) {
__m256i va = VLod(A + i);
__m256i vb = VLod(B + i);
__m256i vr = VMul2(va, vb, vta, vtb, vtc, vtd);
VSto(A + i, vr);
}
}
inline void VSqr(U32* __restrict__ A, U32 Len) {
if (Len < 8) {
for (U32 i = 0; i < Len; ++i)
A[i] = MMul(A[i], A[i]);
return;
}
const __m256i vm32 = _mm256_set1_epi32(Mod);
const __m256i vm64 = _mm256_set1_epi64x(Mod);
const __m256i vbmm = _mm256_set1_epi64x(BmM);
const __m256i vm0 = _mm256_set_epi64x(
0x111111111b1a1918, 0x1111111113121110,
0x111111110b0a0908, 0x1111111103020100
);
const __m256i vm1 = _mm256_set_epi64x(
0x111111111f1e1d1c, 0x1111111117161514,
0x111111110f0e0d0c, 0x1111111107060504
);
__m256i vta, vtb, vtc, vtd;
for (U32 i = 0; i < Len; i += 8) {
__m256i va = VLod(A + i);
__m256i v0 = VEx0(va);
__m256i v1 = VEx1(va);
__m256i vr = VMul4(v0, v1, v0, v1, vta, vtb, vtc, vtd);
VSto(A + i, vr);
}
}
U32 WbFwd[MaxExp + 1];
U32 WbInv[MaxExp + 1];
U32 LenInv[MaxExp + 1];
inline void NttInitAll(int Max) {
for (int Exp = 0; Exp <= Max; ++Exp) {
WbFwd[Exp] = MPow(G, (Mod - 1) >> Exp);
WbInv[Exp] = MPow(GInv, (Mod - 1) >> Exp);
LenInv[Exp] = MInv(1u << Exp);
}
}
inline void NttImpl1(U32* __restrict__ A, U32 Len) {
for (U32 j = 0; j < Len; j += 2) {
U32 a0 = MAdd(A[j + 0], A[j + 1]);
U32 b0 = MSub(A[j + 0], A[j + 1]);
A[j + 0] = a0;
A[j + 1] = b0;
}
}
inline void NttFwd2(U32* __restrict__ A, U32 Len, U32 Wn) {
for (U32 j = 0; j < Len; j += 4) {
U32 a0 = MAdd(A[j + 0], A[j + 2]);
U32 a1 = MAdd(A[j + 1], A[j + 3]);
U32 b0 = MSub(A[j + 0], A[j + 2]);
U32 b1 = MSub(A[j + 1], A[j + 3]);
A[j + 0] = a0;
A[j + 1] = a1;
A[j + 2] = b0;
A[j + 3] = MMul(b1, Wn);
}
}
inline void NttFwd3(U32* __restrict__ A, U32 Len, U32 Wn) {
U32 W2 = MMul(Wn, Wn);
U32 W3 = MMul(W2, Wn);
const __m128i vm32 = _mm_set1_epi32(Mod);
for (U32 j = 0; j < Len; j += 8) {
__m128i va = _mm_load_si128((const __m128i*) (A + j));
__m128i vb = _mm_load_si128((const __m128i*) (A + j + 4));
__m128i vc = _mm_add_epi32(va, vb);
__m128i vd = _mm_sub_epi32(va, vb);
__m128i ve = _mm_min_epu32(vc, _mm_sub_epi32(vc, vm32));
__m128i vf = _mm_min_epu32(vd, _mm_add_epi32(vd, vm32));
_mm_store_si128((__m128i*) (A + j), ve);
_mm_store_si128((__m128i*) (A + j + 4), vf);
A[j + 5] = MMul(Wn, A[j + 5]);
A[j + 6] = MMul(W2, A[j + 6]);
A[j + 7] = MMul(W3, A[j + 7]);
}
}
inline void NttFwd(U32* __restrict__ A, int Exp) {
U32 Len = 1u << Exp;
U32 Wn = WbFwd[Exp];
const __m256i vm32 = _mm256_set1_epi32(Mod);
const __m256i vm64 = _mm256_set1_epi64x(Mod);
const __m256i vbmm = _mm256_set1_epi64x(BmM);
const __m256i vm0 = _mm256_set_epi64x(
0x111111111b1a1918, 0x1111111113121110,
0x111111110b0a0908, 0x1111111103020100
);
const __m256i vm1 = _mm256_set_epi64x(
0x111111111f1e1d1c, 0x1111111117161514,
0x111111110f0e0d0c, 0x1111111107060504
);
__m256i vta, vtb, vtc, vtd;
for (int i = Exp - 1; i >= 3; --i) {
U32 ChkSiz = 1u << i;
U32 tw2 = MMul(Wn, Wn);
U32 tw3 = MMul(tw2, Wn);
U32 tw4 = MMul(tw3, Wn);
U32 tw5 = MMul(tw4, Wn);
U32 tw6 = MMul(tw5, Wn);
U32 tw7 = MMul(tw6, Wn);
U32 twn = MMul(tw7, Wn);
__m256i vw32 = _mm256_set_epi32(tw7, tw6, tw5, tw4, tw3, tw2, Wn, 1);
__m256i vwn = _mm256_set1_epi64x(twn);
for (U32 j = 0; j < Len; j += 2u << i) {
U32* A_ = A + j;
U32* B_ = A_ + ChkSiz;
__m256i vw = vw32;
for (U32 k = 0; k < ChkSiz; k += 8) {
__m256i va = VLod(A_ + k);
__m256i vb = VLod(B_ + k);
__m256i vw0 = VEx0(vw);
__m256i vw1 = VEx1(vw);
__m256i vc = VAdd(va, vb, vta);
__m256i vd = VSub(va, vb, vta);
__m256i ve = VMul3(vd, vw0, vw1, vta, vtb, vtc, vtd);
VSto(A_ + k, vc);
VSto(B_ + k, ve);
vw = VMul4(vw0, vw1, vwn, vwn, vta, vtb, vtc, vtd);
}
}
Wn = MMul(Wn, Wn);
}
if (Exp >= 3) {
NttFwd3(A, Len, Wn);
Wn = MMul(Wn, Wn);
}
if (Exp >= 2)
NttFwd2(A, Len, Wn);
if (Exp)
NttImpl1(A, Len);
}
inline void NttInv2(U32* __restrict__ A, U32 Len, U32 Wn) {
for (U32 j = 0; j < Len; j += 4) {
U32 a0 = A[j + 0];
U32 a1 = A[j + 1];
U32 b0 = A[j + 2];
U32 b1 = MMul(A[j + 3], Wn);
A[j + 0] = MAdd(a0, b0);
A[j + 1] = MAdd(a1, b1);
A[j + 2] = MSub(a0, b0);
A[j + 3] = MSub(a1, b1);
}
}
inline void NttInv3(U32* __restrict__ A, U32 Len, U32 Wn) {
U32 W2 = MMul(Wn, Wn);
U32 W3 = MMul(W2, Wn);
const __m128i vm32 = _mm_set1_epi32(Mod);
for (U32 j = 0; j < Len; j += 8) {
A[j + 5] = MMul(Wn, A[j + 5]);
A[j + 6] = MMul(W2, A[j + 6]);
A[j + 7] = MMul(W3, A[j + 7]);
__m128i va = _mm_load_si128((const __m128i*) (A + j));
__m128i vb = _mm_load_si128((const __m128i*) (A + j + 4));
__m128i vc = _mm_add_epi32(va, vb);
__m128i vd = _mm_sub_epi32(va, vb);
__m128i ve = _mm_min_epu32(vc, _mm_sub_epi32(vc, vm32));
__m128i vf = _mm_min_epu32(vd, _mm_add_epi32(vd, vm32));
_mm_store_si128((__m128i*) (A + j), ve);
_mm_store_si128((__m128i*) (A + j + 4), vf);
}
}
inline void NttInv(U32* __restrict__ A, int Exp) {
if (!Exp)
return;
U32 Len = 1u << Exp;
NttImpl1(A, Len);
if (Exp == 1) {
VMul(A, Len, LenInv[1]);
return;
}
U32 Ws[MaxExp];
Ws[0] = WbInv[Exp];
for (int i = 1; i < Exp; ++i)
Ws[i] = MMul(Ws[i - 1], Ws[i - 1]);
NttInv2(A, Len, Ws[Exp - 2]);
if (Exp == 2) {
VMul(A, Len, LenInv[2]);
return;
}
NttInv3(A, Len, Ws[Exp - 3]);
if (Exp == 3) {
VMul(A, Len, LenInv[3]);
return;
}
const __m256i vm32 = _mm256_set1_epi32(Mod);
const __m256i vm64 = _mm256_set1_epi64x(Mod);
const __m256i vbmm = _mm256_set1_epi64x(BmM);
const __m256i vm0 = _mm256_set_epi64x(
0x111111111b1a1918, 0x1111111113121110,
0x111111110b0a0908, 0x1111111103020100
);
const __m256i vm1 = _mm256_set_epi64x(
0x111111111f1e1d1c, 0x1111111117161514,
0x111111110f0e0d0c, 0x1111111107060504
);
__m256i vta, vtb, vtc, vtd;
for (int i = 3; i < Exp; ++i) {
U32 ChkSiz = 1u << i;
U32 Wn = Ws[Exp - 1 - i];
U32 tw2 = MMul(Wn, Wn);
U32 tw3 = MMul(tw2, Wn);
U32 tw4 = MMul(tw3, Wn);
U32 tw5 = MMul(tw4, Wn);
U32 tw6 = MMul(tw5, Wn);
U32 tw7 = MMul(tw6, Wn);
U32 twn = MMul(tw7, Wn);
__m256i vw32 = _mm256_set_epi32(tw7, tw6, tw5, tw4, tw3, tw2, Wn, 1);
__m256i vwn = _mm256_set1_epi64x(twn);
for (U32 j = 0; j < Len; j += 2u << i) {
U32* A_ = A + j;
U32* B_ = A_ + ChkSiz;
__m256i vw = vw32;
for (U32 k = 0; k < ChkSiz; k += 8) {
__m256i vw0 = VEx0(vw);
__m256i vw1 = VEx1(vw);
__m256i vbl = VLod(B_ + k);
__m256i vb = VMul3(vbl, vw0, vw1, vta, vtb, vtc, vtd);
vw = VMul4(vw0, vw1, vwn, vwn, vta, vtb, vtc, vtd);
__m256i va = VLod(A_ + k);
__m256i vc = VAdd(va, vb, vta);
__m256i vd = VSub(va, vb, vta);
VSto(A_ + k, vc);
VSto(B_ + k, vd);
}
}
}
VMul(A, Len, LenInv[Exp]);
}
inline int Log2Ceil(U32 N) {
static const U8 Table[32] = {
0, 9, 1, 10, 13, 21, 2, 29,
11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7,
19, 27, 23, 6, 26, 5, 4, 31,
};
N = (N << 1) - 1;
N |= N >> 1;
N |= N >> 2;
N |= N >> 4;
N |= N >> 8;
N |= N >> 16;
return (int) Table[(N * 0x07c4acddu) >> 27];
}
int Exp;
U32 Len;
U32 M;
U32 T[MaxLen];
U32 K[MaxM];
U32 A[MaxLen];
namespace poly {
U32 TA[MaxLen], TB[MaxLen], TC[MaxLen];
U32 FNtt[MaxLen], FRInvNtt[MaxLen];
inline void Inv(U32 T[], const U32 A[], U32 N) {
if (N == 1) {
T[0] = MInv(A[0]);
return;
}
U32 M = (N + 1) >> 1;
Inv(T, A, M);
int Exp = Log2Ceil(N + M - 1);
U32 Len = 1u << Exp;
copy(A, A + N, TA);
NttFwd(TA, Exp);
copy(T, T + M, TB);
NttFwd(TB, Exp);
for (U32 i = 0; i < Len; ++i)
TB[i] = MMul(MSub(2, MMul(TA[i], TB[i])), TB[i]);
NttInv(TB, Exp);
copy(TB + M, TB + N, T + M);
fill(TA, TA + Len, 0);
fill(TB, TB + Len, 0);
}
inline void SetDiv() {
FNtt[M] = 1;
for (U32 i = 1; i <= M; ++i)
FNtt[M - i] = MSub(0, K[i]);
reverse_copy(FNtt + 1, FNtt + M + 1, TC);
NttFwd(FNtt, Exp);
Inv(FRInvNtt, TC, M);
NttFwd(FRInvNtt, Exp);
}
inline void Rem(U32 A[]) {
U32 N = M + M;
reverse_copy(A + M, A + N, TC);
NttFwd(TC, Exp);
VMul(TC, FRInvNtt, Len);
NttInv(TC, Exp);
reverse(TC, TC + M);
fill(TC + M, TC + N, 0);
NttFwd(TC, Exp);
VMul(TC, FNtt, Len);
NttInv(TC, Exp);
for (U32 i = 0; i < M; ++i)
A[i] = MSub(A[i], TC[i]);
fill(A + M, A + N, 0);
fill(TC + M, TC + N, 0);
}
}
void PolyPow(U64 N) {
if (N < M) {
T[N] = 1;
return;
}
if (N == M) {
for (U32 i = 1; i <= M; ++i)
T[M - i] = K[i];
return;
}
PolyPow(N >> 1);
NttFwd(T, Exp);
VSqr(T, Len);
NttInv(T, Exp);
if (N & 1) {
copy_backward(T, T + M + M, T + M + M + 1);
T[0] = 0;
}
poly::Rem(T);
}
int main() {
FetchAll();
M = ReadU<U32>();
U64 L = ReadU<U64>();
U64 R = ReadU<U64>();
for (U32 i = 1; i <= M; ++i)
K[i] = ReadU<U32>();
Exp = Log2Ceil(M + M);
Len = 1u << Exp;
NttInitAll(Log2Ceil(M << 2));
T[0] = 1;
for (U32 i = 1; i <= M; ++i)
T[i] = MSub(0, K[i]);
poly::Inv(A, T, M + 1);
reverse(A, A + M);
A[M] = 0;
NttFwd(A, Exp);
poly::SetDiv();
fill(T, T + M + 1, 0);
PolyPow(L + M - 1);
NttFwd(T, Exp);
VMul(A, T, Len);
NttInv(A, Exp);
reverse_copy(A + M, A + M + M - 1, A);
for (U32 i = M; L + i <= R; ++i) {
U32 res = 0;
for (U32 j = 1; j <= M; ++j)
res = MAdd(res, MMul(A[i - j], K[j]));
A[i] = res;
}
for (U32 i = 0; i <= R - L; ++i)
PrintU(A[i]);
FlushAll();
return 0;
}