-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdec.go
957 lines (797 loc) · 24.9 KB
/
dec.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
package math
import (
"encoding/json"
"errors"
"fmt"
"math/big"
"strconv"
"strings"
"testing"
)
// NOTE: never use new(Dec) or else we will panic unmarshalling into the
// nil embedded big.Int
type LegacyDec struct {
i *big.Int
}
const (
// number of decimal places
LegacyPrecision = 18
// bits required to represent the above precision
// Ceiling[Log2[10^Precision - 1]]
LegacyDecimalPrecisionBits = 60
// decimalTruncateBits is the minimum number of bits removed
// by a truncate operation. It is equal to
// Floor[Log2[10^Precision - 1]].
decimalTruncateBits = LegacyDecimalPrecisionBits - 1
maxDecBitLen = MaxBitLen + decimalTruncateBits
// max number of iterations in ApproxRoot function
maxApproxRootIterations = 300
)
var (
precisionReuse = new(big.Int).Exp(big.NewInt(10), big.NewInt(LegacyPrecision), nil)
fivePrecision = new(big.Int).Quo(precisionReuse, big.NewInt(2))
precisionMultipliers []*big.Int
zeroInt = big.NewInt(0)
oneInt = big.NewInt(1)
tenInt = big.NewInt(10)
smallestDec = LegacySmallestDec()
)
// Decimal errors
var (
ErrLegacyEmptyDecimalStr = errors.New("decimal string cannot be empty")
ErrLegacyInvalidDecimalLength = errors.New("invalid decimal length")
ErrLegacyInvalidDecimalStr = errors.New("invalid decimal string")
)
// Set precision multipliers
func init() {
precisionMultipliers = make([]*big.Int, LegacyPrecision+1)
for i := 0; i <= LegacyPrecision; i++ {
precisionMultipliers[i] = calcPrecisionMultiplier(int64(i))
}
}
func precisionInt() *big.Int {
return new(big.Int).Set(precisionReuse)
}
func LegacyZeroDec() LegacyDec { return LegacyDec{new(big.Int).Set(zeroInt)} }
func LegacyOneDec() LegacyDec { return LegacyDec{precisionInt()} }
func LegacySmallestDec() LegacyDec { return LegacyDec{new(big.Int).Set(oneInt)} }
// calculate the precision multiplier
func calcPrecisionMultiplier(prec int64) *big.Int {
if prec < 0 {
panic(fmt.Sprintf("negative precision %v", prec))
}
if prec > LegacyPrecision {
panic(fmt.Sprintf("too much precision, maximum %v, provided %v", LegacyPrecision, prec))
}
zerosToAdd := LegacyPrecision - prec
multiplier := new(big.Int).Exp(tenInt, big.NewInt(zerosToAdd), nil)
return multiplier
}
// get the precision multiplier, do not mutate result
func precisionMultiplier(prec int64) *big.Int {
if prec < 0 {
panic(fmt.Sprintf("negative precision %v", prec))
}
if prec > LegacyPrecision {
panic(fmt.Sprintf("too much precision, maximum %v, provided %v", LegacyPrecision, prec))
}
return precisionMultipliers[prec]
}
// create a new Dec from integer assuming whole number
func LegacyNewDec(i int64) LegacyDec {
return LegacyNewDecWithPrec(i, 0)
}
// create a new Dec from integer with decimal place at prec
// CONTRACT: prec <= Precision
func LegacyNewDecWithPrec(i, prec int64) LegacyDec {
return LegacyDec{
new(big.Int).Mul(big.NewInt(i), precisionMultiplier(prec)),
}
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func LegacyNewDecFromBigInt(i *big.Int) LegacyDec {
return LegacyNewDecFromBigIntWithPrec(i, 0)
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func LegacyNewDecFromBigIntWithPrec(i *big.Int, prec int64) LegacyDec {
return LegacyDec{
new(big.Int).Mul(i, precisionMultiplier(prec)),
}
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func LegacyNewDecFromInt(i Int) LegacyDec {
return LegacyNewDecFromIntWithPrec(i, 0)
}
// create a new Dec from big integer with decimal place at prec
// CONTRACT: prec <= Precision
func LegacyNewDecFromIntWithPrec(i Int, prec int64) LegacyDec {
return LegacyDec{
new(big.Int).Mul(i.BigInt(), precisionMultiplier(prec)),
}
}
// create a decimal from an input decimal string.
// valid must come in the form:
//
// (-) whole integers (.) decimal integers
//
// examples of acceptable input include:
//
// -123.456
// 456.7890
// 345
// -456789
//
// NOTE - An error will return if more decimal places
// are provided in the string than the constant Precision.
//
// CONTRACT - This function does not mutate the input str.
func LegacyNewDecFromStr(str string) (LegacyDec, error) {
// first extract any negative symbol
neg := false
if len(str) > 0 && str[0] == '-' {
neg = true
str = str[1:]
}
if len(str) == 0 {
return LegacyDec{}, ErrLegacyEmptyDecimalStr
}
strs := strings.Split(str, ".")
lenDecs := 0
combinedStr := strs[0]
if len(strs) == 2 { // has a decimal place
lenDecs = len(strs[1])
if lenDecs == 0 || len(combinedStr) == 0 {
return LegacyDec{}, ErrLegacyInvalidDecimalLength
}
combinedStr += strs[1]
} else if len(strs) > 2 {
return LegacyDec{}, ErrLegacyInvalidDecimalStr
}
if lenDecs > LegacyPrecision {
return LegacyDec{}, fmt.Errorf("value '%s' exceeds max precision by %d decimal places: max precision %d", str, LegacyPrecision-lenDecs, LegacyPrecision)
}
// add some extra zero's to correct to the Precision factor
zerosToAdd := LegacyPrecision - lenDecs
zeros := strings.Repeat("0", zerosToAdd)
combinedStr += zeros
combined, ok := new(big.Int).SetString(combinedStr, 10) // base 10
if !ok {
return LegacyDec{}, fmt.Errorf("failed to set decimal string with base 10: %s", combinedStr)
}
if combined.BitLen() > maxDecBitLen {
return LegacyDec{}, fmt.Errorf("decimal '%s' out of range; bitLen: got %d, max %d", str, combined.BitLen(), maxDecBitLen)
}
if neg {
combined = new(big.Int).Neg(combined)
}
return LegacyDec{combined}, nil
}
// Decimal from string, panic on error
func LegacyMustNewDecFromStr(s string) LegacyDec {
dec, err := LegacyNewDecFromStr(s)
if err != nil {
panic(err)
}
return dec
}
func (d LegacyDec) IsNil() bool { return d.i == nil } // is decimal nil
func (d LegacyDec) IsZero() bool { return (d.i).Sign() == 0 } // is equal to zero
func (d LegacyDec) IsNegative() bool { return (d.i).Sign() == -1 } // is negative
func (d LegacyDec) IsPositive() bool { return (d.i).Sign() == 1 } // is positive
func (d LegacyDec) Equal(d2 LegacyDec) bool { return (d.i).Cmp(d2.i) == 0 } // equal decimals
func (d LegacyDec) GT(d2 LegacyDec) bool { return (d.i).Cmp(d2.i) > 0 } // greater than
func (d LegacyDec) GTE(d2 LegacyDec) bool { return (d.i).Cmp(d2.i) >= 0 } // greater than or equal
func (d LegacyDec) LT(d2 LegacyDec) bool { return (d.i).Cmp(d2.i) < 0 } // less than
func (d LegacyDec) LTE(d2 LegacyDec) bool { return (d.i).Cmp(d2.i) <= 0 } // less than or equal
func (d LegacyDec) Neg() LegacyDec { return LegacyDec{new(big.Int).Neg(d.i)} } // reverse the decimal sign
func (d LegacyDec) NegMut() LegacyDec { d.i.Neg(d.i); return d } // reverse the decimal sign, mutable
func (d LegacyDec) Abs() LegacyDec { return LegacyDec{new(big.Int).Abs(d.i)} } // absolute value
func (d LegacyDec) AbsMut() LegacyDec { d.i.Abs(d.i); return d } // absolute value, mutable
func (d LegacyDec) Set(d2 LegacyDec) LegacyDec { d.i.Set(d2.i); return d } // set to existing dec value
func (d LegacyDec) Clone() LegacyDec { return LegacyDec{new(big.Int).Set(d.i)} } // clone new dec
// BigInt returns a copy of the underlying big.Int.
func (d LegacyDec) BigInt() *big.Int {
if d.IsNil() {
return nil
}
cp := new(big.Int)
return cp.Set(d.i)
}
func (d LegacyDec) ImmutOp(op func(LegacyDec, LegacyDec) LegacyDec, d2 LegacyDec) LegacyDec {
return op(d.Clone(), d2)
}
func (d LegacyDec) ImmutOpInt(op func(LegacyDec, Int) LegacyDec, d2 Int) LegacyDec {
return op(d.Clone(), d2)
}
func (d LegacyDec) ImmutOpInt64(op func(LegacyDec, int64) LegacyDec, d2 int64) LegacyDec {
// TODO: use already allocated operand bigint to avoid
// newint each time, add mutex for race condition
// Issue: https://github.com/cosmos/cosmos-sdk/issues/11166
return op(d.Clone(), d2)
}
func (d LegacyDec) SetInt64(i int64) LegacyDec {
d.i.SetInt64(i)
d.i.Mul(d.i, precisionReuse)
return d
}
// addition
func (d LegacyDec) Add(d2 LegacyDec) LegacyDec {
return d.ImmutOp(LegacyDec.AddMut, d2)
}
// mutable addition
func (d LegacyDec) AddMut(d2 LegacyDec) LegacyDec {
d.i.Add(d.i, d2.i)
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// subtraction
func (d LegacyDec) Sub(d2 LegacyDec) LegacyDec {
return d.ImmutOp(LegacyDec.SubMut, d2)
}
// mutable subtraction
func (d LegacyDec) SubMut(d2 LegacyDec) LegacyDec {
d.i.Sub(d.i, d2.i)
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// multiplication
func (d LegacyDec) Mul(d2 LegacyDec) LegacyDec {
return d.ImmutOp(LegacyDec.MulMut, d2)
}
// mutable multiplication
func (d LegacyDec) MulMut(d2 LegacyDec) LegacyDec {
d.i.Mul(d.i, d2.i)
chopped := chopPrecisionAndRound(d.i)
if chopped.BitLen() > maxDecBitLen {
panic("Int overflow")
}
*d.i = *chopped
return d
}
// multiplication truncate
func (d LegacyDec) MulTruncate(d2 LegacyDec) LegacyDec {
return d.ImmutOp(LegacyDec.MulTruncateMut, d2)
}
// mutable multiplication truncage
func (d LegacyDec) MulTruncateMut(d2 LegacyDec) LegacyDec {
d.i.Mul(d.i, d2.i)
chopPrecisionAndTruncate(d.i)
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// multiplication round up at precision end.
func (d LegacyDec) MulRoundUp(d2 LegacyDec) LegacyDec {
return d.ImmutOp(LegacyDec.MulRoundUpMut, d2)
}
// mutable multiplication with round up at precision end.
func (d LegacyDec) MulRoundUpMut(d2 LegacyDec) LegacyDec {
d.i.Mul(d.i, d2.i)
chopPrecisionAndRoundUp(d.i)
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// multiplication
func (d LegacyDec) MulInt(i Int) LegacyDec {
return d.ImmutOpInt(LegacyDec.MulIntMut, i)
}
func (d LegacyDec) MulIntMut(i Int) LegacyDec {
d.i.Mul(d.i, i.BigInt())
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// MulInt64 - multiplication with int64
func (d LegacyDec) MulInt64(i int64) LegacyDec {
return d.ImmutOpInt64(LegacyDec.MulInt64Mut, i)
}
func (d LegacyDec) MulInt64Mut(i int64) LegacyDec {
d.i.Mul(d.i, big.NewInt(i))
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// quotient
func (d LegacyDec) Quo(d2 LegacyDec) LegacyDec {
return d.ImmutOp(LegacyDec.QuoMut, d2)
}
var squaredPrecisionReuse = new(big.Int).Mul(precisionReuse, precisionReuse)
// mutable quotient
func (d LegacyDec) QuoMut(d2 LegacyDec) LegacyDec {
// multiply by precision twice
d.i.Mul(d.i, squaredPrecisionReuse)
d.i.Quo(d.i, d2.i)
chopPrecisionAndRound(d.i)
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// quotient truncate
func (d LegacyDec) QuoTruncate(d2 LegacyDec) LegacyDec {
return d.ImmutOp(LegacyDec.QuoTruncateMut, d2)
}
// mutable quotient truncate
func (d LegacyDec) QuoTruncateMut(d2 LegacyDec) LegacyDec {
// multiply precision twice
d.i.Mul(d.i, squaredPrecisionReuse)
d.i.Quo(d.i, d2.i)
chopPrecisionAndTruncate(d.i)
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// quotient, round up
func (d LegacyDec) QuoRoundUp(d2 LegacyDec) LegacyDec {
return d.ImmutOp(LegacyDec.QuoRoundupMut, d2)
}
// mutable quotient, round up
func (d LegacyDec) QuoRoundupMut(d2 LegacyDec) LegacyDec {
// multiply precision twice
d.i.Mul(d.i, squaredPrecisionReuse)
d.i.Quo(d.i, d2.i)
chopPrecisionAndRoundUp(d.i)
if d.i.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return d
}
// quotient
func (d LegacyDec) QuoInt(i Int) LegacyDec {
return d.ImmutOpInt(LegacyDec.QuoIntMut, i)
}
func (d LegacyDec) QuoIntMut(i Int) LegacyDec {
d.i.Quo(d.i, i.BigInt())
return d
}
// QuoInt64 - quotient with int64
func (d LegacyDec) QuoInt64(i int64) LegacyDec {
return d.ImmutOpInt64(LegacyDec.QuoInt64Mut, i)
}
func (d LegacyDec) QuoInt64Mut(i int64) LegacyDec {
d.i.Quo(d.i, big.NewInt(i))
return d
}
// ApproxRoot returns an approximate estimation of a Dec's positive real nth root
// using Newton's method (where n is positive). The algorithm starts with some guess and
// computes the sequence of improved guesses until an answer converges to an
// approximate answer. It returns `|d|.ApproxRoot() * -1` if input is negative.
// A maximum number of 100 iterations is used a backup boundary condition for
// cases where the answer never converges enough to satisfy the main condition.
func (d LegacyDec) ApproxRoot(root uint64) (guess LegacyDec, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
err, ok = r.(error)
if !ok {
err = errors.New("out of bounds")
}
}
}()
if d.IsNegative() {
absRoot, err := d.Neg().ApproxRoot(root)
return absRoot.NegMut(), err
}
// One decimal, that we invalidate later. Helps us save a heap allocation.
scratchOneDec := LegacyOneDec()
if root == 1 || d.IsZero() || d.Equal(scratchOneDec) {
return d, nil
}
if root == 0 {
return scratchOneDec, nil
}
guess, delta := scratchOneDec, LegacyOneDec()
for iter := 0; iter < maxApproxRootIterations && delta.Abs().GT(smallestDec); iter++ {
prev := guess.Power(root - 1)
if prev.IsZero() {
prev = smallestDec
}
delta.Set(d).QuoMut(prev)
delta.SubMut(guess)
delta.QuoInt64Mut(int64(root))
guess.AddMut(delta)
}
return guess, nil
}
// Power returns a the result of raising to a positive integer power
func (d LegacyDec) Power(power uint64) LegacyDec {
res := LegacyDec{new(big.Int).Set(d.i)}
return res.PowerMut(power)
}
func (d LegacyDec) PowerMut(power uint64) LegacyDec {
if power == 0 {
// Set to 1 with the correct precision.
d.i.Set(precisionReuse)
return d
}
tmp := LegacyOneDec()
for i := power; i > 1; {
if i%2 != 0 {
tmp.MulMut(d)
}
i /= 2
d.MulMut(d)
}
return d.MulMut(tmp)
}
// ApproxSqrt is a wrapper around ApproxRoot for the common special case
// of finding the square root of a number. It returns -(sqrt(abs(d)) if input is negative.
func (d LegacyDec) ApproxSqrt() (LegacyDec, error) {
return d.ApproxRoot(2)
}
// is integer, e.g. decimals are zero
func (d LegacyDec) IsInteger() bool {
return new(big.Int).Rem(d.i, precisionReuse).Sign() == 0
}
// format decimal state
func (d LegacyDec) Format(s fmt.State, verb rune) {
_, err := s.Write([]byte(d.String()))
if err != nil {
panic(err)
}
}
func (d LegacyDec) String() string {
if d.i == nil {
return d.i.String()
}
isNeg := d.IsNegative()
if isNeg {
d = d.Neg()
}
bzInt, err := d.i.MarshalText()
if err != nil {
return ""
}
inputSize := len(bzInt)
var bzStr []byte
// TODO: Remove trailing zeros
// case 1, purely decimal
if inputSize <= LegacyPrecision {
bzStr = make([]byte, LegacyPrecision+2)
// 0. prefix
bzStr[0] = byte('0')
bzStr[1] = byte('.')
// set relevant digits to 0
for i := 0; i < LegacyPrecision-inputSize; i++ {
bzStr[i+2] = byte('0')
}
// set final digits
copy(bzStr[2+(LegacyPrecision-inputSize):], bzInt)
} else {
// inputSize + 1 to account for the decimal point that is being added
bzStr = make([]byte, inputSize+1)
decPointPlace := inputSize - LegacyPrecision
copy(bzStr, bzInt[:decPointPlace]) // pre-decimal digits
bzStr[decPointPlace] = byte('.') // decimal point
copy(bzStr[decPointPlace+1:], bzInt[decPointPlace:]) // post-decimal digits
}
if isNeg {
return "-" + string(bzStr)
}
return string(bzStr)
}
// Float64 returns the float64 representation of a Dec.
// Will return the error if the conversion failed.
func (d LegacyDec) Float64() (float64, error) {
return strconv.ParseFloat(d.String(), 64)
}
// MustFloat64 returns the float64 representation of a Dec.
// Would panic if the conversion failed.
func (d LegacyDec) MustFloat64() float64 {
if value, err := strconv.ParseFloat(d.String(), 64); err != nil {
panic(err)
} else {
return value
}
}
// ____
// __| |__ "chop 'em
// ` \ round!"
// ___|| ~ _ -bankers
// | | __
// | | | __|__|__
// |_____: / | $$$ |
// |________|
// Remove a Precision amount of rightmost digits and perform bankers rounding
// on the remainder (gaussian rounding) on the digits which have been removed.
//
// Mutates the input. Use the non-mutative version if that is undesired
func chopPrecisionAndRound(d *big.Int) *big.Int {
// remove the negative and add it back when returning
if d.Sign() == -1 {
// make d positive, compute chopped value, and then un-mutate d
d = d.Neg(d)
d = chopPrecisionAndRound(d)
d = d.Neg(d)
return d
}
// get the truncated quotient and remainder
quo, rem := d, big.NewInt(0)
quo, rem = quo.QuoRem(d, precisionReuse, rem)
if rem.Sign() == 0 { // remainder is zero
return quo
}
switch rem.Cmp(fivePrecision) {
case -1:
return quo
case 1:
return quo.Add(quo, oneInt)
default: // bankers rounding must take place
// always round to an even number
if quo.Bit(0) == 0 {
return quo
}
return quo.Add(quo, oneInt)
}
}
func chopPrecisionAndRoundUp(d *big.Int) *big.Int {
// remove the negative and add it back when returning
if d.Sign() == -1 {
// make d positive, compute chopped value, and then un-mutate d
d = d.Neg(d)
// truncate since d is negative...
chopPrecisionAndTruncate(d)
d = d.Neg(d)
return d
}
// get the truncated quotient and remainder
quo, rem := d, big.NewInt(0)
quo, rem = quo.QuoRem(d, precisionReuse, rem)
if rem.Sign() == 0 { // remainder is zero
return quo
}
return quo.Add(quo, oneInt)
}
func chopPrecisionAndRoundNonMutative(d *big.Int) *big.Int {
tmp := new(big.Int).Set(d)
return chopPrecisionAndRound(tmp)
}
// RoundInt64 rounds the decimal using bankers rounding
func (d LegacyDec) RoundInt64() int64 {
chopped := chopPrecisionAndRoundNonMutative(d.i)
if !chopped.IsInt64() {
panic("Int64() out of bound")
}
return chopped.Int64()
}
// RoundInt round the decimal using bankers rounding
func (d LegacyDec) RoundInt() Int {
return NewIntFromBigInt(chopPrecisionAndRoundNonMutative(d.i))
}
// chopPrecisionAndTruncate is similar to chopPrecisionAndRound,
// but always rounds down. It does not mutate the input.
func chopPrecisionAndTruncate(d *big.Int) {
d.Quo(d, precisionReuse)
}
func chopPrecisionAndTruncateNonMutative(d *big.Int) *big.Int {
tmp := new(big.Int).Set(d)
chopPrecisionAndTruncate(tmp)
return tmp
}
// TruncateInt64 truncates the decimals from the number and returns an int64
func (d LegacyDec) TruncateInt64() int64 {
chopped := chopPrecisionAndTruncateNonMutative(d.i)
if !chopped.IsInt64() {
panic("Int64() out of bound")
}
return chopped.Int64()
}
// TruncateInt truncates the decimals from the number and returns an Int
func (d LegacyDec) TruncateInt() Int {
return NewIntFromBigInt(chopPrecisionAndTruncateNonMutative(d.i))
}
// TruncateDec truncates the decimals from the number and returns a Dec
func (d LegacyDec) TruncateDec() LegacyDec {
return LegacyNewDecFromBigInt(chopPrecisionAndTruncateNonMutative(d.i))
}
// Ceil returns the smallest interger value (as a decimal) that is greater than
// or equal to the given decimal.
func (d LegacyDec) Ceil() LegacyDec {
tmp := new(big.Int).Set(d.i)
quo, rem := tmp, big.NewInt(0)
quo, rem = quo.QuoRem(tmp, precisionReuse, rem)
// no need to round with a zero remainder regardless of sign
if rem.Cmp(zeroInt) == 0 {
return LegacyNewDecFromBigInt(quo)
}
if rem.Sign() == -1 {
return LegacyNewDecFromBigInt(quo)
}
return LegacyNewDecFromBigInt(quo.Add(quo, oneInt))
}
// LegacyMaxSortableDec is the largest Dec that can be passed into SortableDecBytes()
// Its negative form is the least Dec that can be passed in.
var LegacyMaxSortableDec LegacyDec
func init() {
LegacyMaxSortableDec = LegacyOneDec().Quo(LegacySmallestDec())
}
// ValidSortableDec ensures that a Dec is within the sortable bounds,
// a Dec can't have a precision of less than 10^-18.
// Max sortable decimal was set to the reciprocal of SmallestDec.
func LegacyValidSortableDec(dec LegacyDec) bool {
return dec.Abs().LTE(LegacyMaxSortableDec)
}
// SortableDecBytes returns a byte slice representation of a Dec that can be sorted.
// Left and right pads with 0s so there are 18 digits to left and right of the decimal point.
// For this reason, there is a maximum and minimum value for this, enforced by ValidSortableDec.
func LegacySortableDecBytes(dec LegacyDec) []byte {
if !LegacyValidSortableDec(dec) {
panic("dec must be within bounds")
}
// Instead of adding an extra byte to all sortable decs in order to handle max sortable, we just
// makes its bytes be "max" which comes after all numbers in ASCIIbetical order
if dec.Equal(LegacyMaxSortableDec) {
return []byte("max")
}
// For the same reason, we make the bytes of minimum sortable dec be --, which comes before all numbers.
if dec.Equal(LegacyMaxSortableDec.Neg()) {
return []byte("--")
}
// We move the negative sign to the front of all the left padded 0s, to make negative numbers come before positive numbers
if dec.IsNegative() {
return append([]byte("-"), []byte(fmt.Sprintf(fmt.Sprintf("%%0%ds", LegacyPrecision*2+1), dec.Abs().String()))...)
}
return []byte(fmt.Sprintf(fmt.Sprintf("%%0%ds", LegacyPrecision*2+1), dec.String()))
}
// reuse nil values
var nilJSON []byte
func init() {
empty := new(big.Int)
bz, _ := empty.MarshalText()
nilJSON, _ = json.Marshal(string(bz))
}
// MarshalJSON marshals the decimal
func (d LegacyDec) MarshalJSON() ([]byte, error) {
if d.i == nil {
return nilJSON, nil
}
return json.Marshal(d.String())
}
// UnmarshalJSON defines custom decoding scheme
func (d *LegacyDec) UnmarshalJSON(bz []byte) error {
if d.i == nil {
d.i = new(big.Int)
}
var text string
err := json.Unmarshal(bz, &text)
if err != nil {
return err
}
// TODO: Reuse dec allocation
newDec, err := LegacyNewDecFromStr(text)
if err != nil {
return err
}
d.i = newDec.i
return nil
}
// MarshalYAML returns the YAML representation.
func (d LegacyDec) MarshalYAML() (interface{}, error) {
return d.String(), nil
}
// Marshal implements the gogo proto custom type interface.
func (d LegacyDec) Marshal() ([]byte, error) {
i := d.i
if i == nil {
i = new(big.Int)
}
return i.MarshalText()
}
// MarshalTo implements the gogo proto custom type interface.
func (d *LegacyDec) MarshalTo(data []byte) (n int, err error) {
i := d.i
if i == nil {
i = new(big.Int)
}
if i.Cmp(zeroInt) == 0 {
copy(data, []byte{0x30})
return 1, nil
}
bz, err := d.Marshal()
if err != nil {
return 0, err
}
copy(data, bz)
return len(bz), nil
}
// Unmarshal implements the gogo proto custom type interface.
func (d *LegacyDec) Unmarshal(data []byte) error {
if len(data) == 0 {
d = nil
return nil
}
if d.i == nil {
d.i = new(big.Int)
}
if err := d.i.UnmarshalText(data); err != nil {
return err
}
if d.i.BitLen() > maxDecBitLen {
return fmt.Errorf("decimal out of range; got: %d, max: %d", d.i.BitLen(), maxDecBitLen)
}
return nil
}
// Size implements the gogo proto custom type interface.
func (d *LegacyDec) Size() int {
bz, _ := d.Marshal()
return len(bz)
}
// Override Amino binary serialization by proxying to protobuf.
func (d LegacyDec) MarshalAmino() ([]byte, error) { return d.Marshal() }
func (d *LegacyDec) UnmarshalAmino(bz []byte) error { return d.Unmarshal(bz) }
// helpers
// test if two decimal arrays are equal
func LegacyDecsEqual(d1s, d2s []LegacyDec) bool {
if len(d1s) != len(d2s) {
return false
}
for i, d1 := range d1s {
if !d1.Equal(d2s[i]) {
return false
}
}
return true
}
// minimum decimal between two
func LegacyMinDec(d1, d2 LegacyDec) LegacyDec {
if d1.LT(d2) {
return d1
}
return d2
}
// maximum decimal between two
func LegacyMaxDec(d1, d2 LegacyDec) LegacyDec {
if d1.LT(d2) {
return d2
}
return d1
}
// intended to be used with require/assert: require.True(DecEq(...))
func LegacyDecEq(t *testing.T, exp, got LegacyDec) (*testing.T, bool, string, string, string) {
t.Helper()
return t, exp.Equal(got), "expected:\t%v\ngot:\t\t%v", exp.String(), got.String()
}
func LegacyDecApproxEq(t *testing.T, d1, d2, tol LegacyDec) (*testing.T, bool, string, string, string) {
t.Helper()
diff := d1.Sub(d2).Abs()
return t, diff.LTE(tol), "expected |d1 - d2| <:\t%v\ngot |d1 - d2| = \t\t%v", tol.String(), diff.String()
}
// FormatDec formats a decimal (as encoded in protobuf) into a value-rendered
// string following ADR-050. This function operates with string manipulation
// (instead of manipulating the sdk.Dec object).
func FormatDec(v string) (string, error) {
parts := strings.Split(v, ".")
if len(parts) > 2 {
return "", fmt.Errorf("invalid decimal: too many points in %s", v)
}
intPart, err := FormatInt(parts[0])
if err != nil {
return "", err
}
if len(parts) == 1 {
return intPart, nil
}
decPart := strings.TrimRight(parts[1], "0")
if len(decPart) == 0 {
return intPart, nil
}
// Ensure that the decimal part has only digits.
// https://github.com/cosmos/cosmos-sdk/issues/12811
if !hasOnlyDigits(decPart) {
return "", fmt.Errorf("non-digits detected after decimal point in: %q", decPart)
}
return intPart + "." + decPart, nil
}