-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathjob_tracker.py
1237 lines (1001 loc) · 45.9 KB
/
job_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import cv2
import numpy
import flask
import flask.logging
import flask_cors
import random
import requests
import threading
import multiprocessing as mp
import queue
import time
import functools
import argparse
from werkzeug.serving import WSGIRequestHandler
import field_codec_utils
from logging_utils import root_logger
import logging_utils
resolution_wh = {
"360p": {
"w": 480,
"h": 360
},
"480p": {
"w": 640,
"h": 480
},
"720p": {
"w": 1280,
"h": 720
},
"1080p": {
"w": 1920,
"h": 1080
}
}
# SingleFrameGenerator的数据生成函数
def sfg_get_next_init_task(video_cap=None, video_conf=None):
# # 模拟产生数据
# frame = list()
# for i in range(10):
# frame.append(list())
# for j in range(3):
# frame[i].append(random.randint(1,1000))
# import numpy
# frame = numpy.array(frame)
assert video_cap
global resolution_wh
# 从视频流读取一帧
ret, frame = video_cap.read()
assert ret
# 根据video_conf['resolution']调整大小
frame = cv2.resize(frame, (
resolution_wh[video_conf['resolution']]['w'],
resolution_wh[video_conf['resolution']]['h']
))
input_ctx = dict()
# input_ctx['image'] = (video_cap.get(cv2.CAP_PROP_POS_FRAMES), numpy.array(frame).shape)
st_time = time.time()
input_ctx['image'] = field_codec_utils.encode_image(frame)
ed_time = time.time()
root_logger.info(
"time consumed in encode-decode: {}".format(ed_time - st_time))
# input_ctx['image'] = frame.tolist()
root_logger.warning(
"only unsupport init task with one image frame as input")
return input_ctx
def clpg_get_next_init_task(video_cap=None, video_conf=None):
assert video_cap
# 从视频流读取n帧(TODO:作为video_conf的调优参数,但其与时延关系不明朗)
input_ctx = dict()
input_ctx['clip'] = list()
st_time = time.time()
n = 5
if 'ntracking' in video_conf.keys():
n = video_conf['ntracking']
for i in range(n):
ret, frame = video_cap.read()
assert ret
# 根据video_conf['resolution']调整大小
frame = cv2.resize(frame, (
resolution_wh[video_conf['resolution']]['w'],
resolution_wh[video_conf['resolution']]['h']
))
input_ctx['clip'].append(field_codec_utils.encode_image(frame))
ed_time = time.time()
root_logger.info(
"time consumed in retriving-data: {}".format(ed_time - st_time))
root_logger.warning(
"only unsupport init task with {} image frame as input".format(n))
return input_ctx
class Generator():
def __init__(self, video_id, video_url, gen_func):
self.video_id = video_id
self.cap = cv2.VideoCapture(video_url)
self.gen_func = gen_func
self.fpt = 1
def get_current_clips(self):
pass
def get_fpt(self):
return self.fpt
def get_next_init_task(self, video_conf=None):
self.fpt = 1
if "ntracking" in video_conf.keys():
self.fpt += video_conf['ntracking']
input_ctx = self.gen_func(self.cap, video_conf)
return input_ctx
class Manager():
BEGIN_TASKNAME = "Start"
BEGIN_TOPO_STEP = 0
END_TASKNAME = "End"
END_TOPO_STEP = 256
# 设定生成器算子
generator_func = {
"SingleFrameGenerator": functools.partial(sfg_get_next_init_task),
"ClipGenerator": functools.partial(clpg_get_next_init_task)
}
# 保存执行结果的缓冲大小
LIST_BUFFER_SIZE = 10
def __init__(self):
self.cloud_addr = None
self.local_addr = None
# 计算服务url
self.service_cloud_addr = None
self.service_url = dict()
# keepalive的http客户端
self.sess = requests.Session()
# 本地视频流
self.video_info_list = [
{"id": 0, "type": "student in classroom", "url": "input/input.mov"},
{"id": 1, "type": "people in meeting-room", "url": "input/input1.mp4"},
{"id": 3, "type": "traffic flow outdoor",
"url": "input/traffic-720p.mp4"}
]
# 模拟数据库:记录下发到本地的job以及该job的执行结果
self.global_job_count = 0
self.job_dict = dict()
self.job_result_dict = dict()
# 调度队列
self.unsched_job_q = None
# 执行队列
self.exec_job_q = None
def set_unsched_job_q(self, q):
self.unsched_job_q = q
def set_exec_job_q(self, q):
self.exec_job_q = q
def set_cloud_addr(self, cloud_ip, cloud_port):
self.cloud_addr = cloud_ip + ":" + str(cloud_port)
def set_service_cloud_addr(self, addr):
self.service_cloud_addr = addr
def get_cloud_addr(self):
return self.cloud_addr
def get_video_info_by_id(self, video_id=id):
for info in self.video_info_list:
if info["id"] == video_id:
return info
return None
def get_available_service_list(self):
r = self.sess.get(
url="http://{}/get_service_list".format(self.service_cloud_addr))
assert isinstance(r.json(), list)
return r.json()
def get_service_dict(self, taskname):
r = self.sess.get(url="http://{}/get_execute_url/{}".format(
self.service_cloud_addr,
taskname
))
assert isinstance(r.json(), dict)
return r.json()
def get_chosen_service_url(self, taskname, choice):
port = self.service_cloud_addr.split(':')[1]
url = "http://{}:{}/execute_task/{}".format(
choice["node_ip"], port, taskname)
return url
def join_cloud(self, local_port):
# 接入云端,汇报自身信息
for video_info in self.video_info_list:
r = self.sess.post(url="http://{}/node/update_status".format(self.cloud_addr),
json={"node_port": local_port,
"video_id": video_info["id"],
"video_type": video_info["type"]})
self.local_addr = r.json()["node_addr"]
def generate_global_job_id(self):
self.global_job_count += 1
new_id = "GLOBAL_ID_" + str(self.global_job_count)
return new_id
# 云端/user/submit_job:争用node_status,修改node_addr的job_uid和node关系
# 云端调度器需要根据job_uid找到节点,更新node_addr的任务调度策略:争用node_status,查询node_addr
# 云端/user/submit_job_constraint需要根据job_uid找到节点,更新node_addr的任务约束:争用node_status,查询node_addr
def get_node_addr_by_job_uid(self, job_uid):
for node_addr, info in node_status.items():
assert "job_uid_list" in info
for uid in info["job_uid_list"]:
if job_uid == uid:
return node_addr
root_logger.error(
"cannot found job_uid-{} in node_status: {}".format(job_uid, node_status))
return None
def post_reschedule_request(self, job=None):
assert isinstance(job, Job)
url = "http://{}/node/get_plan".format(self.get_cloud_addr())
param = {
"job_uid": job.get_job_uid(),
"dag": job.get_dag(),
"last_plan_result": job.get_plan_result(),
"user_constraint": job.get_user_constraint()
}
r = self.sess.post(url=url,
json=param)
root_logger.info(
"posted unsched_req for job-{} to cloud, got r={}".format(job.get_job_uid(), r.json()))
# 工作节点更新调度计划:与通信进程竞争self.job_dict[job.get_job_uid()],修改job状态
def update_job_plan(self, job_uid, video_conf, flow_mapping):
assert job_uid in self.job_dict.keys()
job = self.job_dict[job_uid]
assert isinstance(job, Job)
job.set_plan(video_conf=video_conf, flow_mapping=flow_mapping)
job.start_exec()
root_logger.info(
"starting exec job-{}, updated plan".format(job.get_job_uid()))
# 工作节点更新用户约束
def update_job_user_constraint(self, job_uid, user_constraint):
assert job_uid in self.job_dict.keys()
job = self.job_dict[job_uid]
assert isinstance(job, Job)
job.set_user_constraint(user_constraint=user_constraint)
root_logger.info("set job-{} user_constraint to '{}'".format(
job.get_job_uid(),
job.get_user_constraint()
))
# 工作节点模拟CPU主循环的调度器
def pop_one_exec_job(self):
root_logger.info("job_dict keys: {}".format(self.job_dict.keys()))
# 本地调度器:首先从可执行队列中调度获取所有可执行的job
# while not self.exec_job_q.empty():
# new_exec_job = self.exec_job_q.get()
# assert new_exec_job.get_sched_state() == Job.JOB_STATE_UNSCHED
# assert isinstance(new_exec_job, Job)
# new_exec_job.start_exec()
# self.job_dict[new_exec_job.get_job_uid()] = new_exec_job
# 云端调度器:与通信进程竞争self.job_dict[job.get_job_uid()],修改job状态
# 见update_job_plan函数
# 遍历链表,选择一个可执行的job(参考linux0.12进程调度器)
# 蓄水池算法
sel_job = None
n_executable_job = 0
for job in self.job_dict.values():
root_logger.info(
"job-{} status={}".format(job.get_job_uid(), job.get_sched_state()))
if job.get_sched_state() == Job.JOB_STATE_EXEC:
n_executable_job += 1
if random.randint(1, n_executable_job) == 1:
sel_job = job
if not sel_job:
root_logger.warning("no job executable")
else:
assert isinstance(sel_job, Job)
root_logger.info(
"schedule job-{} to exec".format(sel_job.get_job_uid()))
return sel_job
def submit_job(self, job_uid, dag_generator, dag_flow, dag_input, video_id):
# 在本地启动新的job
assert job_uid not in self.job_dict.keys()
job = Job(job_uid=job_uid,
dag_generator=dag_generator, dag_flow=dag_flow, dag_input=dag_input,
video_id=video_id,
video_url=self.get_video_info_by_id(video_id)["url"],
generator_func=Manager.generator_func[dag_generator],
is_stream=True)
job.set_manager(self)
self.job_dict[job.get_job_uid()] = job
self.post_reschedule_request(job)
root_logger.info("current job_dict={}".format(self.job_dict.keys()))
# 本地调度(未使用):将新任务放入待调度队列
# self.unsched_job_q.put(job)
# 云端调度:
def submit_job_result(self, job_uid, job_result, report2cloud=False):
# 将Job本次提交的结果同步到本地
if job_uid not in self.job_result_dict:
self.job_result_dict[job_uid] = {
"appended_result": list(), "latest_result": dict()}
assert isinstance(job_result, dict)
assert job_uid in self.job_result_dict
for k, v in job_result.items():
assert k in self.job_result_dict[job_uid].keys()
if k == "appended_result":
# 仅保留最近一批结果(防止爆内存)
if len(self.job_result_dict[job_uid][k]) > Manager.LIST_BUFFER_SIZE:
del self.job_result_dict[job_uid][k][0]
self.job_result_dict[job_uid][k].append(v)
else:
# 直接替换结果
assert isinstance(v, dict)
self.job_result_dict[job_uid][k].update(v)
# 将Job本次提交的结果同步到云端(注意/node/sync_job_result的处理,要避免死循环)
if self.cloud_addr == self.local_addr:
root_logger.warning(
"{} post /node/sync_job_result to itself".format(self.local_addr))
if report2cloud:
r = self.sess.post(url="http://{}/node/sync_job_result".format(self.cloud_addr),
json={"job_uid": job_uid,
"job_result": job_result})
def get_job_result(self, job_uid):
if job_uid in self.job_result_dict:
return self.job_result_dict[job_uid]
return None
def restart_job(self, job):
# TODO:工作节点维护用户对任务的约束。
assert isinstance(job, Job)
should_reschedule = job.prepare_restart()
if should_reschedule:
# 云端调度
self.post_reschedule_request(job)
root_logger.info(
"prepare to reschedule job-{}, posted unsched_req to cloud".format(job.get_job_uid()))
# 本地调度(未使用)
# self.unsched_job_q.put(job)
# root_logger.info("prepare to reschedule job-{}: put to unsched_job_q".format(job.get_job_uid()))
root_logger.info(
"done job.prepare_restart(). RESTART job-{}".format(job.get_job_uid()))
def remove_job(self, job):
# 根据job的id移除job
del self.job_dict[job.get_job_uid()]
class Job():
JOB_STATE_UNSCHED = 0
# JOB_STATE_SCHED = 1
JOB_STATE_EXEC = 2
JOB_STATE_DONE = 3
def __init__(self, job_uid, dag_generator, dag_flow, dag_input, video_id, video_url, generator_func, is_stream):
# job的全局唯一id
self.job_uid = job_uid
# DAG图信息
self.dag_generator = dag_generator
self.dag_flow = dag_flow
self.dag_flow_input_deliminator = "."
self.dag_input = dag_input
self.loop_flag = is_stream
# job的数据来源id及数据生成函数
self.data_generator = Generator(
video_id=video_id, video_url=video_url, gen_func=generator_func)
# self.video_id = video_id
# self.generator_func = generator_func
# 调度状态机:执行计划与历史计划的执行结果
self.flow_mapping = None
self.video_conf = None
self.plan_result = dict()
self.user_constraint = None
# 调度状态机:当前调度状态
self.n_exec = 0
self.added_plan_result = dict()
self.sched_state = Job.JOB_STATE_UNSCHED
# 执行状态机:当前所在的“拓扑步”
self.topology_step = Manager.BEGIN_TOPO_STEP
# 执行状态机:各步骤中间结果
self.n_loop = 0
self.task_result = dict()
self.manager = None
# keepalive的http客户端
self.sess = requests.Session()
# 拓扑解析dag图
# NOTES: 目前仅支持流水线
# Start -> D -> C -> End
# 0 1 2 3
self.next_task_list = dict()
self.prev_task_list = dict()
assert isinstance(self.dag_flow, list)
prev_taskname = Manager.BEGIN_TASKNAME
curr_step = Manager.BEGIN_TOPO_STEP
for name in self.dag_flow:
self.next_task_list[curr_step] = [name]
self.prev_task_list[name] = [prev_taskname]
curr_step += 1
prev_taskname = name
self.next_task_list[curr_step] = [Manager.END_TASKNAME]
self.prev_task_list[Manager.END_TASKNAME] = [self.dag_flow[-1]]
def set_manager(self, manager):
self.manager = manager
assert isinstance(self.manager, Manager)
def get_job_uid(self):
return self.job_uid
def get_dag(self):
return {"generator": self.dag_generator,
"flow": self.dag_flow,
"input": self.dag_input,
"input_deliminator": self.dag_flow_input_deliminator}
def get_dag_flow(self):
return self.dag_flow
def get_sched_state(self):
return self.sched_state
def get_loop_flag(self):
return self.loop_flag
# ---------------------------------------
# ---- 执行计划与执行计划结果的相关函数 ----
def set_plan(self, video_conf, flow_mapping):
self.flow_mapping = flow_mapping
self.video_conf = video_conf
assert isinstance(self.flow_mapping, dict)
assert isinstance(self.video_conf, dict)
def get_plan(self):
return {"video_conf": self.video_conf, "flow_mapping": self.flow_mapping}
def get_plan_result(self):
return self.plan_result
def set_user_constraint(self, user_constraint):
self.user_constraint = user_constraint
assert isinstance(user_constraint, dict)
def get_user_constraint(self):
return self.user_constraint
# -------------------------------
# ---- Job最近一次执行后的结果 ----
def get_latest_loop_count_result(self):
# taskname = self.prev_task_list[Manager.END_TASKNAME][0]
# result = None
# if taskname == 'car_detection':
# task_result = self.get_task_result(taskname=taskname, field="result")
# # result = {"n_loop": self.n_loop, "#cars": len(task_result)}
# result = {"n_loop": self.n_loop}
# result.update(task_result)
# if taskname == 'face_alignment':
# task_result = self.get_task_result(taskname=taskname, field="head_pose")
# result = {"n_loop": self.n_loop, "#headup": len(task_result)}
# if taskname == 'helmet_detection':
# task_result = self.get_task_result(taskname=taskname, field="clip_result")
# result = {"n_loop": self.n_loop, "#no_helmet": task_result[-1]['n_no_helmet']}
result = dict()
render_input_ctx = self.get_task_input(curr_taskname="Render")
result = {"n_loop": self.n_loop}
result.update(render_input_ctx["count"])
return result
# return self.get_task_result(taskname="SingleFrameGenerator",
# field="image")
def get_latest_loop_image_bytestr_result(self):
render_input_ctx = self.get_task_input(curr_taskname="Render")
return render_input_ctx["image"]
def should_skip_loop(self):
if self.video_conf and "nskip" in self.video_conf:
nskip_conf = self.video_conf['nskip']
if nskip_conf > 0 and (self.n_loop % nskip_conf != 0):
return True
return False
def prepare_restart(self):
# 执行状态机
self.n_loop += 1
# 根据已有的调度结果,决定下一帧是否处理。
# 若处理,则清空所有结果,否则只清空generator的结果
if not self.should_skip_loop():
self.task_result = dict()
root_logger.info("to handle loop: {}".format(self.n_loop))
else:
task_result_keys_copy = list(self.task_result.keys())
for taskname in task_result_keys_copy:
if taskname in Manager.generator_func.keys():
del self.task_result[taskname]
root_logger.info("to skip loop: {}".format(self.n_loop))
self.topology_step = Manager.BEGIN_TOPO_STEP
# 调度状态机:重置时保留执行计划
should_reschedule = False
self.n_exec += 1
if self.n_exec > 10:
# 每10次执行,重新调度一次
self.prepare_reschedule()
should_reschedule = True
return should_reschedule
def start_exec(self):
self.sched_state = Job.JOB_STATE_EXEC
def prepare_reschedule(self):
# 重置时保留执行计划,生成执行计划的统计结果
assert self.n_exec > 0
nframe_per_exec = self.data_generator.get_fpt()
root_logger.info("n_exec={}, nframe_per_exec={}".format(
self.n_exec, nframe_per_exec))
for taskname, sum_delay in self.added_plan_result["delay"].items():
root_logger.info(
"sum_delay of taskname({}): {}".format(taskname, sum_delay))
self.added_plan_result["delay"][taskname] = sum_delay / \
(self.n_exec * nframe_per_exec * 1.0)
self.plan_result = self.added_plan_result
root_logger.info("calculated plan_result: {}".format(self.plan_result))
# 重置调度状态
# self.flow_mapping = None
# self.video_conf = None
self.n_exec = 0
self.added_plan_result = dict()
self.sched_state = Job.JOB_STATE_UNSCHED
def set2done(self, msg):
self.sched_state = Job.JOB_STATE_DONE
root_logger.warning("job-{} is set to DONE with \nmsg: {}\n".format(
self.get_job_uid(), msg
))
def set_one_loop_to_end(self):
self.topology_step = len(self.next_task_list) - 1
def one_loop_is_end(self):
return self.next_task_list[self.topology_step][0] == Manager.END_TASKNAME
# -----------------------------------------
# ---- 与Job的DAG中各个任务执行有关的函数 ----
def is_generator_task(self, taskname):
return taskname in Manager.generator_func.keys()
def store_task_result(self, done_taskname, output_ctx):
self.task_result[done_taskname] = output_ctx
def get_task_result(self, taskname, field):
# # 对数据生成的task,通过generator_func获取输入
# # 注意需要实现为幂等:(1)判断数据是否已经读取(2)且Job重启时需要清空输入
# if self.is_generator_task(taskname) and \
# taskname not in self.task_result.keys():
# # self.task_result[]
# self.task_result[taskname] = self.generator_func(self.manager, self.video_id)
# 对其他task,直接获取Job对象中缓存的中间结果
root_logger.info("to get task({}) result".format(taskname))
assert taskname in self.task_result.keys()
root_logger.info("taskname({}) task_res keys: {}".format(
taskname, self.task_result[taskname].keys()))
assert field in self.task_result[taskname].keys()
return self.task_result[taskname][field]
def get_task_input(self, curr_taskname):
ctx = dict()
# 根据当前任务,寻找依赖任务
# 将依赖任务的结果放进ctx返回
for k, v in self.dag_input[curr_taskname].items():
prev_taskname = v.split(self.dag_flow_input_deliminator)[0]
prev_field = v.split(self.dag_flow_input_deliminator)[1]
ctx[k] = self.get_task_result(
taskname=prev_taskname, field=prev_field)
return ctx
def invoke_service(self, serv_url, taskname, input_ctx):
root_logger.info("get serv_url={}".format(serv_url))
st_time = time.time()
r = self.sess.post(url=serv_url, json=input_ctx)
ed_time = time.time()
try:
res = r.json()
root_logger.info("got service result: {}, (delta_t={})".format(
res.keys(), ed_time - st_time))
# 记录任务的执行结果
self.store_task_result(taskname, r.json())
# 累计执行计划的执行结果
if "delay" not in self.added_plan_result.keys():
self.added_plan_result["delay"] = dict()
if taskname not in self.added_plan_result["delay"].keys():
self.added_plan_result["delay"][taskname] = 0
self.added_plan_result["delay"][taskname] += ed_time - st_time
root_logger.info("update added_plan_result: {}".format(
self.added_plan_result))
return True
except Exception as e:
root_logger.error("caught exception: {}".format(e), exc_info=True)
root_logger.error("got serv result: {}".format(r.text))
return False
return False
# ---------------------------------------------------------------------
# ---- 确定执行计划的Job被CPU调度后,按计划执行任务的主函数(非抢占式) ----
def forward_one_step(self):
# TODO:将Job推进一步或根据跳帧率处理
nt_list = self.next_task_list[self.topology_step]
root_logger.info("got job next_task_list - {}".format(nt_list))
# 若跳帧,则仅读取数据但不处理
# if self.should_skip_loop() and self.topology_step == Manager.BEGIN_TOPO_STEP:
# root_logger.info("skipping n_loop {}".format(self.n_loop))
# self.get_task_input(nt_list[0])
# self.set_one_loop_to_end()
# return
# 若跳帧,则仅读取数据但不处理
if self.should_skip_loop():
# 逻辑assertion:一个循环执行过程中不会出现self.should_skip_loop()==True情况
root_logger.info("skipping n_loop {}".format(self.n_loop))
taskname = nt_list[0]
assert self.is_generator_task(taskname)
output_ctx = self.data_generator.get_next_init_task(
video_conf=self.video_conf)
self.store_task_result(taskname, output_ctx=output_ctx)
# 终止本次 DAG执行循环
self.set_one_loop_to_end()
return
available_service_list = self.manager.get_available_service_list()
root_logger.info("got available_service_list: {}".format(
available_service_list))
for taskname in nt_list:
root_logger.info("to forward taskname={}".format(taskname))
# 对Generator任务,读取数据后返回
if self.is_generator_task(taskname):
# 根据video_conf,获取当前任务的输入数据
output_ctx = self.data_generator.get_next_init_task(
video_conf=self.video_conf)
self.store_task_result(taskname, output_ctx=output_ctx)
root_logger.info(
"done generator task, get_next_init_task({})".format(output_ctx.keys()))
continue
# 对其他可调用任务,获取输入数据,并调用url
assert taskname in available_service_list
input_ctx = self.get_task_input(taskname)
root_logger.info("get input_ctx({}) of taskname({})".format(
input_ctx.keys(),
taskname
))
# 根据flow_mapping,执行task,并记录中间结果
root_logger.info("flow_mapping ={}".format(self.flow_mapping))
choice = self.flow_mapping[taskname]
# execute_url_dict = self.manager.get_service_dict(taskname)
# root_logger.info("get execute_url_dict {}".format(execute_url_dict))
root_logger.info(
"get choice of '{}' in flow_mapping, choose: {}".format(taskname, choice))
url = self.manager.get_chosen_service_url(taskname, choice)
root_logger.info("get url {}".format(url))
self.invoke_service(
serv_url=url, taskname=taskname, input_ctx=input_ctx)
self.topology_step += 1
# 单例变量:主线程任务管理器,Manager
manager = Manager()
# 单例变量:后台web线程
flask.Flask.logger_name = "listlogger"
WSGIRequestHandler.protocol_version = "HTTP/1.1"
user_app = flask.Flask(__name__)
tracker_app = flask.Flask(__name__)
flask_cors.CORS(user_app)
flask_cors.CORS(tracker_app)
# 模拟云端数据库,维护接入节点及其已经submit的任务的job_uid。
# 用户接口(/user/xxx)争用查询&修改,云端调度器(cloud_scheduler_loop)争用查询
# 单例变量:接入到当前节点的节点信息
node_status = dict()
# 外部接口:从云端接受用户提交的job参数,包括指定的DAG、数据来源,将/node/submit_job的注册结果返回
@user_app.route("/user/submit_job", methods=["POST"])
@flask_cors.cross_origin()
def user_submit_job_cbk():
# 获取用户针对视频流提交的job,转发到对应边端
para = flask.request.json
root_logger.info("/user/submit_job got para={}".format(para))
node_addr = para['node_addr']
video_id = para['video_id']
if node_addr not in node_status:
return flask.jsonify({"status": 1, "error": "cannot found {}".format(node_addr)})
# TODO:切分DAG产生多个SUB_ID
unique_job_id = manager.generate_global_job_id() + "." + "SUB_ID"
# TODO:维护job_uid和节点关系
if "job_uid_list" not in node_status[node_addr]:
node_status[node_addr]["job_uid_list"] = list()
node_status[node_addr]["job_uid_list"].append(unique_job_id)
new_req_para = dict()
new_req_para["unique_job_id"] = unique_job_id
new_req_para.update(para)
r = manager.sess.post(url="http://{}/node/submit_job".format(node_addr),
json=new_req_para)
# r = requests.post(url="http://{}/node/submit_job".format(node_addr),
# json=new_req_para)
# 更新任务约束
new_req_para = dict()
new_req_para["job_uid"] = unique_job_id
if "user_constraint" in para:
new_req_para["user_constraint"] = para["user_constraint"]
else:
new_req_para["user_constraint"] = {"delay": 0.8, "accuracy": 0.8}
r_constraint = manager.sess.post(url="http://{}/node/submit_job_user_constraint".format(node_addr),
json=new_req_para)
# TODO:更新sidechan中<job_uid, node_addr>映射关系
cloud_ip = manager.get_cloud_addr().split(":")[0]
r_sidechan = manager.sess.post(url="http://{}:{}/user/update_node_addr".format(cloud_ip, 5100),
json={"job_uid": unique_job_id,
"node_addr": node_addr.split(":")[0] + ":5101"})
ret_dict = {"node_submit": 0, "constraint": 0, "sidechan": 0}
if r.ok:
root_logger.info("got /node/submit_job ret: {}".format(r.json()))
ret_dict.update(r.json())
ret_dict["node_submit"] = 1
if r_sidechan.ok:
ret_dict["sidechan"] = 1
if r_constraint:
ret_dict['constraint'] = 1
return flask.jsonify(ret_dict)
# 外部接口:从云端获取用户对job的约束,需要传入job_uid
@user_app.route("/user/submit_job_user_constraint", methods=["POST"])
@flask_cors.cross_origin()
def user_submit_job_user_constraint_cbk():
para = flask.request.json
root_logger.info(
"/user/submit_job_user_constraint got para={}".format(para))
# 后端校验?否则调度器可能抛出“无法比较str和float”
assert ("job_uid" in para) and ("user_constraint" in para)
assert ("delay" in para["user_constraint"])
assert (isinstance(para["user_constraint"]["delay"], int) or
isinstance(para["user_constraint"]["delay"], float))
job_uid = para["job_uid"]
node_addr = manager.get_node_addr_by_job_uid(job_uid)
assert node_addr
new_req_para = dict()
new_req_para["job_uid"] = job_uid
new_req_para["user_constraint"] = para["user_constraint"]
r = manager.sess.post(url="http://{}/node/submit_job_user_constraint".format(node_addr),
json=new_req_para)
if r.ok:
# 提交成功则转发响应
root_logger.info("got ret: {}".format(r.json()))
return flask.jsonify(r.json())
return flask.jsonify({"msg": "request to /node not ok", "text": r.text})
# 外部接口:从云端获取job执行结果,需要传入job_uid
@user_app.route("/user/sync_job_result/<job_uid>", methods=["GET"])
@flask_cors.cross_origin()
def user_sync_job_result_cbk(job_uid):
job_result = manager.get_job_result(job_uid=job_uid)
return flask.jsonify({"status": 0,
"result": job_result})
# 外部接口:获取当前节点所知的所有节点信息
@user_app.route("/user/get_all_status")
@flask_cors.cross_origin()
def user_get_all_status_cbk():
return flask.jsonify({"status": 0, "data": node_status})
# 内部接口:节点间同步job的执行结果到本地
@tracker_app.route("/node/sync_job_result", methods=["POST"])
@flask_cors.cross_origin()
def node_sync_job_result_cbk():
para = flask.request.json
# NOTES:防止再次请求/node/sync_job_result接口,否则死锁
manager.submit_job_result(job_uid=para["job_uid"],
job_result=para["job_result"],
report2cloud=False)
return flask.jsonify({"status": 200})
# 内部接口:接受其他节点传入的job初始化参数,在本地生成可以执行的job
@tracker_app.route("/node/submit_job", methods=["POST"])
@flask_cors.cross_origin()
def node_submit_job_cbk():
# 获取产生job的初始化参数
para = flask.request.json
root_logger.info("got {}".format(para))
generator_name = para["dag"]["generator"]
if generator_name not in Manager.generator_func.keys():
return flask.jsonify({"status": 1, "msg": "unsupport generator name"})
manager.submit_job(job_uid=para["unique_job_id"],
dag_generator=para["dag"]["generator"],
dag_flow=para["dag"]["flow"],
dag_input=para["dag"]["input"],
video_id=para["video_id"])
return flask.jsonify({"status": 0,
"msg": "submitted to manager from api: node/submit_job",
"job_uid": para["unique_job_id"]})
# 内部接口:接收云端下发的任务约束,包括job_uid,时延和精度
@tracker_app.route("/node/submit_job_user_constraint", methods=["POST"])
@flask_cors.cross_origin()
def node_submit_job_user_constraint_cbk():
para = flask.request.json
manager.update_job_user_constraint(job_uid=para["job_uid"],
user_constraint=para["user_constraint"])
return flask.jsonify({
"status": 0,
"msg": "node updated constraint (manager.update_job_user_constraint)"
})
# 云端内部接口:其他节点接入当前节点时,需要上传节点状态
@tracker_app.route("/node/update_status", methods=["POST"])
@flask_cors.cross_origin()
def node_update_status_cbk():
para = flask.request.json
root_logger.info("from {}: got {}".format(flask.request.remote_addr, para))
node_ip = flask.request.remote_addr
node_port = para['node_port']
node_addr = node_ip + ":" + str(node_port)
video_id = para['video_id']
video_type = para['video_type']
if node_addr not in node_status:
node_status[node_addr] = dict()
if "video" not in node_status[node_addr]:
node_status[node_addr]["video"] = dict()
if video_id not in node_status[node_addr]["video"]:
node_status[node_addr]["video"][video_id] = dict()
node_status[node_addr]["video"][video_id].update({"type": video_type})
return flask.jsonify({"status": 0, "node_addr": node_addr})
# 工作节点内部接口:接受调度计划更新
@tracker_app.route("/node/update_plan", methods=["POST"])
@flask_cors.cross_origin()
def node_update_plan_cbk():
para = flask.request.json
root_logger.info("/node/update_plan got para={}".format(para))
# 与工作节点模拟CPU执行的主循环竞争manager
manager.update_job_plan(
job_uid=para['job_uid'], video_conf=para['video_conf'], flow_mapping=para['flow_mapping'])
return flask.jsonify({"status": 0, "msg": "node updated plan (manager.update_job_plan)"})
# 云端内部接口:接受调度请求
@tracker_app.route("/node/get_plan", methods=["POST"])
@flask_cors.cross_origin()
def node_get_plan_cbk():
para = flask.request.json
root_logger.info("/node/get_plan got para={}".format(para))
manager.unsched_job_q.put(para)
return flask.jsonify({"status": 0, "msg": "accepted (put to unsched_job_q)"})
def start_user_listener(serv_port=5000):
user_app.run(host="0.0.0.0", port=serv_port)
def start_tracker_listener(serv_port=5001):
tracker_app.run(host="0.0.0.0", port=serv_port)
# app.run(port=serv_port)
# app.run(host="*", port=serv_port)
# 云端调度器主循环:从unsched_job_q中取一未调度的任务请求,生成调度计划
def cloud_scheduler_loop(manager=None):
assert manager
assert isinstance(manager, Manager)
unsched_job_q = manager.unsched_job_q
exec_job_q = manager.exec_job_q
assert unsched_job_q
assert exec_job_q
sess = requests.Session()
# import scheduler_func.demo_scheduler
import scheduler_func.pid_scheduler