It is recommended to use conda
or mamba to create a
development environment for movement. In the following we assume you have
conda
installed, but the same commands will also work with mamba
/micromamba
.
First, create and activate a conda
environment:
conda create -n movement-dev python=3.10
conda activate movement-dev
To install movement for development, clone the GitHub repository, and then run from inside the repository:
pip install -e .[dev] # works on most shells
pip install -e '.[dev]' # works on zsh (the default shell on macOS)
This will install the package in editable mode, including all dependencies required for development.
Finally, initialise the pre-commit hooks:
pre-commit install
In all cases, please submit code to the main repository via a pull request (PR). We recommend, and adhere, to the following conventions:
- Please submit draft PRs as early as possible to allow for discussion.
- The PR title should be descriptive e.g. "Add new function to do X" or "Fix bug in Y".
- The PR description should be used to provide context and motivation for the changes.
- One approval of a PR (by a repo owner) is enough for it to be merged.
- Unless someone approves the PR with optional comments, the PR is immediately merged by the approving reviewer.
- Ask for a review from someone specific if you think they would be a particularly suited reviewer.
- PRs are preferably merged via the "squash and merge" option, to keep a clean commit history on the main branch.
A typical PR workflow would be:
- Create a new branch, make your changes, and stage them.
- When you try to commit, the pre-commit hooks will be triggered.
- Stage any changes made by the hooks, and commit.
- You may also run the pre-commit hooks manually, at any time, with
pre-commit run -a
. - Make sure to write tests for any new features or bug fixes. See testing below.
- Don't forget to update the documentation, if necessary. See contributing documentation below.
- Push your changes to GitHub and open a draft pull request, with a meaningful title and a thorough description of the changes.
- If all checks (e.g. linting, type checking, testing) run successfully, you may mark the pull request as ready for review.
- Respond to review comments and implement any requested changes.
- Success 🎉 !! Your PR will be (squash-)merged into the main branch.
Running pre-commit install
will set up pre-commit hooks to ensure a consistent formatting style. Currently, these include:
- ruff does a number of jobs, including enforcing PEP8 and sorting imports
- black for auto-formatting
- mypy as a static type checker
- check-manifest to ensure that the right files are included in the pip package.
These will prevent code from being committed if any of these hooks fail. To run them individually (from the root of the repository), you can use:
ruff .
black ./
mypy -p movement
check-manifest
To run all the hooks before committing:
pre-commit run # for staged files
pre-commit run -a # for all files in the repository
For docstrings, we adhere to the numpydoc style.
We use pytest for testing and aim for ~100% test coverage (as far as is reasonable). All new features should be tested. Write your test methods and classes in the tests folder.
For some tests, you will need to use real experimental data. Do not include these data in the repository, especially if they are large. We store several sample datasets in an external data repository. See sample data for more information.
All pushes and pull requests will be built by GitHub actions. This will usually include linting, testing and deployment.
A GitHub actions workflow (.github/workflows/test_and_deploy.yml
) has been set up to run (on each push/PR):
- Linting checks (pre-commit).
- Testing (only if linting checks pass)
- Release to PyPI (only if a git tag is present and if tests pass).
We use semantic versioning, which includes MAJOR
.MINOR
.PATCH
version numbers:
- PATCH = small bugfix
- MINOR = new feature
- MAJOR = breaking change
We use setuptools_scm to automatically version movement.
It has been pre-configured in the pyproject.toml
file.
setuptools_scm
will automatically infer the version using git.
To manually set a new semantic version, create a tag and make sure the tag is pushed to GitHub.
Make sure you commit any changes you wish to be included in this version. E.g. to bump the version to 1.0.0
:
git add .
git commit -m "Add new changes"
git tag -a v1.0.0 -m "Bump to version 1.0.0"
git push --follow-tags
Alternatively, you can also use the GitHub web interface to create a new release and tag.
The addition of a GitHub tag triggers the package's deployment to PyPI. The version number is automatically determined from the latest tag on the main branch.
The documentation is hosted via GitHub pages at
movement.neuroinformatics.dev.
Its source files are located in the docs
folder of this repository.
They are written in either reStructuredText or
markdown.
The index.md
file corresponds to the homepage of the documentation website.
Other .rst
or .md
files are linked to the homepage via the toctree
directive.
We use Sphinx and the
PyData Sphinx Theme
to build the source files into HTML output.
This is handled by a GitHub actions workflow (.github/workflows/docs_build_and_deploy.yml
).
The build job is triggered on each PR, ensuring that the documentation build is not broken by new changes.
The deployment job is only triggerred whenever a tag is pushed to the main branch,
ensuring that the documentation is published in sync with each PyPI release.
To edit the documentation, first clone the repository, and install movement in a development environment.
Now create a new branch, edit the documentation source files (.md
or .rst
in the docs
folder),
and commit your changes. Submit your documentation changes via a pull request,
following the same guidelines as for code changes.
Make sure that the header levels in your .md
or .rst
files are incremented
consistently (H1 > H2 > H3, etc.) without skipping any levels.
If you create a new documentation source file (e.g. my_new_file.md
or my_new_file.rst
),
you will need to add it to the toctree
directive in index.md
for it to be included in the documentation website:
:maxdepth: 2
:hidden:
existing_file
my_new_file
If you are adding references to an external link (e.g. https://github.com/neuroinformatics-unit/movement/issues/1
) in a .md
file, you will need to check if a matching URL scheme (e.g. https://github.com/neuroinformatics-unit/movement/
) is defined in myst_url_schemes
in docs/source/conf.py
. If it is, the following [](scheme:loc)
syntax will be converted to the full URL during the build process:
[link text](movement-github:issues/1)
If it is not yet defined and you have multiple external links pointing to the same base URL, you will need to add the URL scheme to myst_url_schemes
in docs/source/conf.py
.
If your PR introduces new public-facing functions, classes, or methods,
make sure to add them to the docs/source/api_index.rst
page, so that they are
included in the API reference,
e.g.:
My new module
--------------
.. currentmodule:: movement.new_module
.. autosummary::
:toctree: api
new_function
NewClass
For this to work, your functions/classes/methods will need to have docstrings that follow the numpydoc style.
We use sphinx-gallery
to create the examples.
To add new examples, you will need to create a new .py
file in examples/
.
The file should be structured as specified in the relevant
sphinx-gallery documentation.
We recommend that you build and view the documentation website locally, before you push it. To do so, first install the requirements for building the documentation:
pip install -r docs/requirements.txt
Then, from the root of the repository, run:
sphinx-build docs/source docs/build
You can view the local build by opening docs/build/index.html
in a browser.
To refresh the documentation, after making changes, remove the docs/build
folder and re-run the above command:
rm -rf docs/build && sphinx-build docs/source docs/build
To check that external links are correctly resolved, run:
sphinx-build docs/source docs/build -b linkcheck
If the linkcheck step incorrectly marks links with valid anchors as broken, you can skip checking the anchors in specific links by adding the URLs to linkcheck_anchors_ignore_for_url
in docs/source/conf.py
, e.g.:
# The linkcheck builder will skip verifying that anchors exist when checking
# these URLs
linkcheck_anchors_ignore_for_url = [
"https://gin.g-node.org/G-Node/Info/wiki/",
"https://neuroinformatics.zulipchat.com/",
]
We maintain some sample data to be used for testing, examples and tutorials on an external data repository. Our hosting platform of choice is called GIN and is maintained by the German Neuroinformatics Node. GIN has a GitHub-like interface and git-like CLI functionalities.
Currently, the data repository contains sample pose estimation data files
stored in the poses
folder. Metadata for these files, including information
about their provenance, is stored in the poses_files_metadata.yaml
file.
To fetch the data from GIN, we use the pooch Python package, which can download data from pre-specified URLs and store them locally for all subsequent uses. It also provides some nice utilities, like verification of sha256 hashes and decompression of archives.
The relevant functionality is implemented in the movement.sample_data.py
module.
The most important parts of this module are:
- The
SAMPLE_DATA
download manager object. - The
list_sample_data()
function, which returns a list of the available files in the data repository. - The
fetch_sample_data_path()
function, which downloads a file (if not already cached locally) and returns the local path to it. - The
fetch_sample_data()
function, which downloads a file and loads it into movement directly, returning anxarray.Dataset
object.
By default, the downloaded files are stored in the ~/.movement/data
folder.
This can be changed by setting the DATA_DIR
variable in the movement.sample_data.py
module.
Only core movement developers may add new files to the external data repository. To add a new file, you will need to:
- Create a GIN account
- Ask to be added as a collaborator on the movement data repository (if not already)
- Download the GIN CLI and set it up with your GIN credentials, by running
gin login
in a terminal. - Clone the movement data repository to your local machine, by running
gin get neuroinformatics/movement-test-data
in a terminal. - Add your new files to
/movement-test-data/poses/
. - Determine the sha256 checksum hash of each new file by running
sha256sum <filename>
in a terminal. Alternatively, you can usepooch
to do this for you:python -c "import pooch; hash = pooch.file_hash('/path/to/file'); print(hash)"
. If you wish to generate a text file containing the hashes of all the files in a given folder, you can usepython -c "import pooch; pooch.make_registry('/path/to/folder', 'sha256_registry.txt')
. - Add metadata for your new files to
poses_files_metadata.yaml
, including their sha256 hashes. - Commit your changes using
gin commit -m <message> <filename>
. - Upload the committed changes to the GIN repository by running
gin upload
. Latest changes to the repository can be pulled viagin download
.gin sync
will synchronise the latest changes bidirectionally.