-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBayesian.java
198 lines (188 loc) · 5.03 KB
/
Bayesian.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import java.util.*;
class table
{ String data[][]={
{"youth","high","no","fair","no"},
{"youth","high","no","excellent","no"},
{"middle_aged","high","no","fair","yes"},
{"senior","medium","no","fair","yes"},
{"senior","low","yes","fair","yes"},
{"senior","low","yes","excellent","no"},
{"middle_aged","low","yes","excellent","yes"},
{"youth","medium","no","fair","no"},
{"youth","low","yes","fair","yes"},
{"senior","medium","yes","excellent","yes"},
{"youth","medium","yes","excellent","yes"},
{"middle_aged","medium","no","fair","yes"},
{"middle_aged","high","yes","fair","yes"},
{"senior","medium","no","excellent","no"}
};
String attrib[][]={
{"age","youth","middle_aged","senior"},
{"income","high","medium","low"},
{"student","no","yes"},
{"credit_rating","fair","excellent"},
{"buys_comp","yes","no"}
};
String temp[];
int yes,no;
int m,n,decide;
table()
{ n=5;
m=14;
Scanner in=new Scanner(System.in);
for(int i=0;i<m;i++)
System.out.println(Arrays.toString(data[i]));
System.out.println("Enter the deciding attribute");
for(int i=0;i<n;i++)
System.out.println("press "+i+" for : "+attrib[i][0]);
decide=in.nextInt();
System.out.println("Enter the tuple you wish to classify");
temp=new String[n-1];
for(int i=0;i<n-1;i++)
{ System.out.println(attrib[i][0] +" :");
temp[i]=in.next();
}
for(int i=0;i<m;i++)
if(data[i][4].equals("yes"))
yes++;
else
no++;
for(int i=0;i<4;i++)
for(int j=1;j<attrib[i].length;j++)
showall(attrib[i][j],i);
compute(decide);
}
void showall(String atr,int t)
{ int count=0,c1=0,c2=0;
for(int i=0;i<m;i++)
if(data[i][t].equals(atr))
count++;
System.out.println("\n");
System.out.println("for attribute : "+attrib[t][0]);
for(int i=0;i<m;i++)
if(data[i][t].equals(atr) && data[i][4].equals("yes"))
c1++;
System.out.println("P( "+atr+" | yes ) : ( "+c1+" / "+yes +" ) ");
c1=0;
for(int i=0;i<m;i++)
if(data[i][t].equals(atr) && data[i][4].equals("no"))
c1++;
System.out.println("P( "+atr+" | no ) : ( "+c1+" / "+no +" ) ");
}
void compute(int t)
{ int count=0;
int yes[][]=new int[m][5];
int ansy[]=new int[n];
int ansn[]=new int[n];
for(int j=1;j<3;j++)
{ count=0;
for(int i=0;i<m;i++)
{ if(attrib[decide][j]==data[i][decide])
count++;
}
yes[decide][j]=count;
}
for(int i=0;i<temp.length;i++)
{ count=0;
for(int j=0;j<m;j++)
if(temp[i].equals(data[j][i]) && (data[j][n-1]).equals("yes"))
count++;
ansy[i]=count;
}
ansy[n-1]=yes[n-1][1];
ansn[n-1]=yes[n-1][2];
for(int i=0;i<temp.length;i++)
{ count=0;
for(int j=0;j<m;j++)
if(temp[i].equals(data[j][i]) && (data[j][n-1]).equals("no"))
count++;
ansn[i]=count;
}
System.out.println(Arrays.toString(temp));
System.out.println("\n\n");
System.out.println(Arrays.toString(ansy));
double proby=1;
for(int i=0;i<n;i++)
proby=proby * ((double)ansy[i]/ansy[n-1]);
System.out.println("The probability of yes is :"+proby);
double probn=1;
for(int i=0;i<n;i++)
probn=probn * ((double)ansn[i]/ansn[n-1]);
System.out.println("The probability of no is :"+probn);
if(probn<proby)
System.out.println("BUYS : YES");
else
System.out.println("BUYS : NO");
}
}
class Bayesian
{ public static void main (String args[])
{ table t=new table();
}
}
/*
OUTPUT:[youth, high, no, fair, no]
[youth, high, no, excellent, no]
[middle_aged, high, no, fair, yes]
[senior, medium, no, fair, yes]
[senior, low, yes, fair, yes]
[senior, low, yes, excellent, no]
[middle_aged, low, yes, excellent, yes]
[youth, medium, no, fair, no]
[youth, low, yes, fair, yes]
[senior, medium, yes, excellent, yes]
[youth, medium, yes, excellent, yes]
[middle_aged, medium, no, fair, yes]
[middle_aged, high, yes, fair, yes]
[senior, medium, no, excellent, no]
Enter the deciding attribute
press 0 for : age
press 1 for : income
press 2 for : student
press 3 for : credit_rating
press 4 for : buys_comp
4
Enter the tuple you wish to classify
age :
youth
income :
medium
student :
yes
credit_rating :
fair
for attribute : age
P( youth | yes ) : ( 2 / 9 )
P( youth | no ) : ( 3 / 5 )
for attribute : age
P( middle_aged | yes ) : ( 4 / 9 )
P( middle_aged | no ) : ( 0 / 5 )
for attribute : age
P( senior | yes ) : ( 3 / 9 )
P( senior | no ) : ( 2 / 5 )
for attribute : income
P( high | yes ) : ( 2 / 9 )
P( high | no ) : ( 2 / 5 )
for attribute : income
P( medium | yes ) : ( 4 / 9 )
P( medium | no ) : ( 2 / 5 )
for attribute : income
P( low | yes ) : ( 3 / 9 )
P( low | no ) : ( 1 / 5 )
for attribute : student
P( no | yes ) : ( 3 / 9 )
P( no | no ) : ( 4 / 5 )
for attribute : student
P( yes | yes ) : ( 6 / 9 )
P( yes | no ) : ( 1 / 5 )
for attribute : credit_rating
P( fair | yes ) : ( 6 / 9 )
P( fair | no ) : ( 2 / 5 )
for attribute : credit_rating
P( excellent | yes ) : ( 3 / 9 )
P( excellent | no ) : ( 3 / 5 )
[youth, medium, yes, fair]
[2, 4, 6, 6, 9]
The probability of yes is :0.04389574759945129
The probability of no is :0.019200000000000002
BUYS : YES /*