-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathSSAV_test.py
53 lines (44 loc) · 1.3 KB
/
SSAV_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import sys
caffe_root = './mycaffe-convlstm/'
sys.path.insert(0, caffe_root + 'python')
#sys.path.append('./mycaffe-convlstm/python')
import caffe
import os
import cv2
import scipy.misc as misc
import datetime
import math
T = 3
#T = 1
def MaxMinNormalization(x,Max,Min):
x = (x - Min) / (Max - Min);
return x;
caffe.set_mode_gpu()
caffe.set_device(0)
print "Load net..."
net = caffe.Net('./test.prototxt','./model/SSAV.caffemodel', caffe.TEST)
#net = caffe.Net('./test.prototxt','./snapshot/SSAV_iter_15800.caffemodel', caffe.TEST)
Dataset = 'DAVIS'
with open('./txt/' + Dataset + '_test.txt') as f:
lines = f.readlines()
for idx in range(len(lines)/T):
print "Run net..."
net.forward()
for i in xrange(T):
all = net.blobs['conv7_sm'].data
out = all[i][0]
line = lines[idx*T+i].replace(" 0\n", "")
dir, file = os.path.split(line)
file = file.replace(".jpg", '.png')
print(dir)
video = dir.split("/")[-2]
img = misc.imread(line)
out = misc.imresize(out, img.shape)
out = out.astype('float')
out = MaxMinNormalization(out, out.max(), out.min())
savePath = './results/SSAV/SSAV_' + Dataset + '/' + video + '/'
if not os.path.exists(savePath):
os.makedirs(savePath)
misc.imsave(savePath + file, out)
print 'Save the ' + str(idx*T+i) + ' Image: ' + savePath