-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevalP.py
122 lines (95 loc) · 3.56 KB
/
evalP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import math
import os.path
import sys
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import misc.config as config
import misc.dataEval as data
import misc.modelEval as model
import misc.utils as utils
def run(net, net_var, loader, optimizer, optimizer_var, tracker, train=False, prefix='', epoch=0):
count = 0
COUNT = 20000 # calculating classification error and entropy of 20,000 randomly sampled questions
N_MC = 50 # no. of Monte-carlo simulations
cps = []
cvs = []
wps = []
wvs = []
net.train()
net_var.train()
tq = tqdm(loader, desc='{} E{:03d}'.format(prefix, epoch), ncols=0)
for v, q, a, idx, image_id, q_len in tq:
p_miss = []
if count > COUNT:
break
var_params = {
'volatile': train,
'requires_grad': True,
}
v = Variable(v.cuda(async = True), ** var_params)
q = Variable(q.type(torch.FloatTensor).cuda(async = True), ** var_params)
a = Variable(a.type(torch.FloatTensor).cuda(async = True), ** var_params)
q_len = Variable(q_len.type(torch.FloatTensor).cuda(async = True), ** var_params)
a_temp = a
a_temp = a_temp.detach().cpu().numpy()
a_indices = np.argmax(a_temp, axis=1)
out, p_at = net(v, q, q_len)
sum = np.zeros(tuple(out.shape))
for j in range(N_MC):
out, p_at = net(v, q, q_len)
preds = F.softmax(out, dim=1)
sum += preds.data
avg = sum / N_MC
entropy = -1 * np.sum(avg * np.log(avg), axis=-1)
for k, an_index in enumerate(a_indices):
p_miss.append(1 - avg[k][an_index]) # probability of mis-classification
acc = utils.batch_accuracy(out.data, a.data).cpu()
for i, imgIdx in enumerate(image_id):
if math.isnan(entropy[i]):
continue
if count > COUNT:
break
count += 1
p = p_miss[i]
error = np.log(1 / (1 - p))
if acc[i] == 0:
wps.append(error)
wvs.append(entropy[i])
else:
cps.append(error)
cvs.append(entropy[i])
with open("classification_error_of_correct_samples.txt", "w") as file:
file.write(str(cps))
with open("entropy_of_correct_samples.txt", "w") as file:
file.write(str(cvs))
with open("classification_error_of_incorrect_samples.txt.txt", "w") as file:
file.write(str(wps))
with open("entropy_of_incorrect_samples.txt", "w") as file:
file.write(str(wvs))
def main():
if len(sys.argv) > 1:
name = ' '.join(sys.argv[1:])
else:
from datetime import datetime
name = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
target_name = os.path.join('logs', '{}.pth'.format(name))
print('will save to {}'.format(target_name))
cudnn.benchmark = True
train_loader = data.get_loader(train=True)
val_loader = data.get_loader(val=True)
net = nn.DataParallel(model.Net(train_loader.dataset.num_tokens)).cuda()
optimizer = optim.Adam([p for p in net.parameters() if p.requires_grad])
net_var = nn.DataParallel(model.Uncertainty(config.max_answers)).cuda()
optimizer_var = optim.SGD([p for p in net_var.parameters() if p.requires_grad], lr=0.0002)
tracker = utils.Tracker()
ckp = torch.load('logs/2019-03-19_22:49:23.pth_9.pth')
net.load_state_dict(ckp['weights'])
net_var.load_state_dict(ckp['weights_var'])
run(net, net_var, val_loader, optimizer, optimizer_var, tracker, train=False, prefix='val')
if __name__ == '__main__':
main()