-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path21 Longest Palindromic Subsequence.cpp
70 lines (58 loc) · 1.6 KB
/
21 Longest Palindromic Subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#include <bits/stdc++.h>
using namespace std;
int LCS(string X, string Y, int n, int m) {
int dp[n + 1][m + 1]; // DP - matrix
// base case of recursion --> for initialization of dp - matrix
for (int i = 0; i <= n; i++)
for (int j = 0; j <= m; j++)
if (i == 0 || j == 0)
dp[i][j] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
if (X[i - 1] == Y[j - 1]) // when last character is same
dp[i][j] = 1 + dp[i - 1][j - 1];
else // when last character is not same -> pick max
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
return dp[n][m];
}
int LPS(string X, int n) {
string rev_X = X;
reverse(rev_X.begin(), rev_X.end()); // reverse the string // take reversed string as another string of lcs and apply lcs
return LCS(X, rev_X, n, n);
}
signed main() {
string X, Y; cin >> X;
int n = X.length();
cout << LPS(X, n) << endl;
return 0;
}
leetcode:
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.length();
string t ="";
for(int i = n ; i>=0; i--){
t.push_back(s[i]);
}
int m = t.length();
int d[n+1][m+1];
for(int i = 0 ;i<=n;i++){
for(int j=0;j<=m;j++){
if(i==0 || j==0){
d[i][j] = 0;
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(s[i-1] == t[j-1]){
d[i][j] = d[i-1][j-1] +1;
}else{
d[i][j] = max(d[i-1][j] , d[i][j-1]);
}
}
}
return d[n][m];
}
};