-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08 Count the number of subset with given difference.cpp
54 lines (44 loc) · 1.56 KB
/
08 Count the number of subset with given difference.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include <bits/stdc++.h>
using namespace std;
int CountSubsetsWithSum(int arr[], int n, int sum) {
int t[n + 1][sum + 1]; // DP - matrix
// initialization
// here we are setting 1st row and 1st column
// i denotes the size of the array
// j denotes the target sum (subset sum)
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= sum; j++) {
if (i == 0) // when array(i) is empty than there is no meaning of sum of elements so return count of subset as 0;
t[i][j] = 0;
if (j == 0) // when sum(j) is zero and there is always a chance of empty subset so return count as 1;
t[i][j] = 1;
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (arr[i - 1] <= j) // when element in the list is less then target sum
t[i][j] = t[i - 1][j - arr[i - 1]] + t[i - 1][j]; // either exclude or inxlude and add both of them to get final count
else
t[i][j] = t[i - 1][j]; // exclude when element in the list is greater then the sum
}
}
return t[n][sum]; // finally return the last row and last column element
}
int CountSubsetsWithDiff(int arr[], int n, int diff) {
int sumOfArray = 0;
for (int i = 0; i < n; i++)
sumOfArray += arr[i]; // taking sum of the array
if ((sumOfArray + diff) % 2 != 0)
return 0;
else
return CountSubsetsWithSum(arr, n, (sumOfArray + diff) / 2);// we will get the number of array(subset) with particular sum
}
int main() {
int n; cin >> n;
int arr[n];
for (int i = 0; i < n; i++)
cin >> arr[i];
int diff; cin >> diff;
cout << CountSubsetsWithDiff(arr, n, diff) << endl;
return 0;
}