-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-simulation-create-noise-free-data.py
155 lines (129 loc) · 5.27 KB
/
1-simulation-create-noise-free-data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import torch
import os
import sbi
import sbi.utils
from sbi.utils.user_input_checks_utils import MultipleIndependent
from sbi.utils import BoxUniform
from sbi.inference import prepare_for_sbi, simulate_for_sbi, SNPE, SNLE, SNRE
from sbi.analysis import pairplot
import nibabel as nb
#Common functions
# Define the signal simulator
class ball_and_sticks:
""" Ball&Sticks dMRI model
Use the Ball&Sticks model to simulate the signal attenuation S/S0 (i.e. T2 contrast removed).
Hence, bvals and bvecs are assumed to not contain b0 volumes
Args:
params: model parameters -> [d, f_1, th_1, ph_1, ..., f_n, th_n, ph_n, SNR]
"""
import numpy as np
import torch
import os
def __init__(self, bvals, bvecs):
self.bvals = bvals
self.bvecs = bvecs
def add_noise(Sj, SNR, type_noise):
sigma = 1 / SNR
if type_noise == 'Gaussian':
try:
random = np.random.normal(0, sigma, len(Sj))
Sj_noise = Sj + random
except:
print("Exception sigma")
elif type_noise == 'Rician': # Noise in quadrature
noise_1 = np.random.normal(0, sigma, len(Sj))
noise_2 = np.random.normal(0, sigma, len(Sj))
Sj_noise = np.sqrt((Sj + noise_1) ** 2 + noise_2 ** 2)
return Sj_noise
def __call__(self, params):
params = params.flatten()
n_fib = int((len(params) - 1) / 3)
s0 = 1
d = params[0]
v = np.zeros((n_fib, 3))
sumf = 0
signal = torch.tensor((np.zeros((len(self.bvals))))) # np.zeros((len(b)))
for i in range(0, n_fib):
fi = params[1 + 3 * i]
sumf += fi
th = params[2 + 3 * i]
phi = params[3 + 3 * i]
v = np.array([np.sin(th) * np.cos(phi), np.sin(th) * np.sin(phi), np.cos(th)]) # conversion to cartesians
signal += s0 * (fi * np.exp(-d * self.bvals * np.power(np.dot(self.bvecs.T, v), 2))) # sticks contribution to the signal
signal += s0 * (1 - sumf) * np.exp(-self.bvals * d) # isotropic contribution
return signal
def get_data(file, mmap=True):
"""
Load NIfTI image data from a file.
Parameters:
file (str): The path to the NIfTI file.
mmap (bool, optional): Whether to use memory-mapped file access. Default is True.
Returns:
numpy.ndarray: The voxel data from the NIfTI file.
"""
import nibabel as nb
img = nb.load(file, mmap=mmap)
img_voxels = img.get_fdata()
return img_voxels
def export_nifti(data, orig_data, output_path, name):
"""
Args:
data:
orig_data:
output_path:
name:
"""
import nibabel as nb
import os
# Copy the header of the original image
aff_mat = orig_data.affine
nb.save(nb.Nifti2Image(data, affine=aff_mat), os.path.join(output_path, name))
def cart2sph(x,y,z):
import numpy as np
import math
#takes list xyz (single coord)
r = np.sqrt(x*x + y*y + z*z)
if r==0:
theta = math.acos(z / 1) # To avoid NaN when r==0
else:
theta = math.acos(z/r) #*180/ math.pi #to degrees
phi = math.atan2(y,x) #*180/ math.pi
return r, theta, phi
#Load files
dPath = '/Simulations/data'
data = get_data(f'{dPath}/data.nii.gz')
mask = get_data(f'{dPath}/nodif_brain_mask.nii.gz')
mean_d = get_data(f'{dPath}/data.bedpostX/mean_dsamples.nii.gz')
mean_f1 = get_data(f'{dPath}/data.bedpostX/mean_f1samples.nii.gz') #volume fraction f1 > f2 > f3
mean_f2 = get_data(f'{dPath}/data.bedpostX/mean_f2samples.nii.gz')
mean_f3 = get_data(f'{dPath}/data.bedpostX/mean_f3samples.nii.gz')
v1 = get_data(f'{dPath}/data.bedpostX/dyads1.nii.gz') #orientacion de la fibra
v2 = get_data(f'{dPath}/data.bedpostX/dyads2.nii.gz')
v3 = get_data(f'{dPath}/data.bedpostX/dyads3.nii.gz')
mean_S0 = get_data(f'{dPath}/data.bedpostX/mean_S0samples.nii.gz')
bvals = np.genfromtxt(dPath + '/bvals', dtype=np.float32)
bvecs = np.genfromtxt(dPath + '/bvecs', dtype=np.float32)
#Generate noisefree-data
# Initialize empty arrays
noisefree_data = np.zeros_like(data)
th1 = np.zeros_like(mean_d)
phi1 = np.zeros_like(mean_d)
th2 = np.zeros_like(mean_d)
phi2 = np.zeros_like(mean_d)
th3 = np.zeros_like(mean_d)
phi3 = np.zeros_like(mean_d)
print('Simulating data')
# Simulate data
simulator = ball_and_sticks(bvals, bvecs)
x, y, z = np.where(mask > 0)
for i, j, k in zip(x, y, z):
_, th1[i,j,k], phi1[i,j,k] = cart2sph(v1[i,j,k,0], v1[i,j,k,1], v1[i,j,k,2])
_, th2[i,j,k], phi2[i,j,k] = cart2sph(v2[i,j,k,0], v2[i,j,k,1], v2[i,j,k,2])
_, th3[i,j,k], phi3[i,j,k] = cart2sph(v3[i,j,k,0], v3[i,j,k,1], v3[i,j,k,2])
th = np.array([mean_d[i, j, k], mean_f1[i, j, k], th1[i, j, k], phi1[i, j, k], mean_f2[i, j, k], th2[i, j, k], phi2[i, j, k], mean_f3[i, j, k], th3[i, j, k], phi3[i, j, k]])
noisefree_data[i, j, k] = simulator(th)
print('Save noise-free-data')
# If you want to export the niftis to visualize them in FSLeyes, do for example:
orig_data = nb.load(f'{dPath}/data.nii.gz', mmap=True) # This is to capture the correct header of the nifti image when exporting
export_nifti(noisefree_data, orig_data, dPath, 'noisyfree_data_full.nii.gz')