-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsklearn_glm.html
1420 lines (1086 loc) · 291 KB
/
sklearn_glm.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<title>sklearn_glm</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
<link rel="stylesheet" href="/static/css/md_notebook-win10.css">
<!-- Loading mathjax macro -->
<!-- Load mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML"></script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": {
styles: {'.MathJax_Display': {"margin": 0}},
linebreaks: { automatic: true }
}
});
</script>
<!-- End of mathjax configuration --></head>
<body>
<div tabindex="-1" id="notebook" class="border-box-sizing">
<div class="container" id="notebook-container">
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="线性模型的概念">线性模型的概念<a class="anchor-link" href="#线性模型的概念">¶</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="画一条直线">画一条直线<a class="anchor-link" href="#画一条直线">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="c1"># 令x为-5到5之间,元素数为100的等差数列</span>
<span class="n">x</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">100</span><span class="p">)</span>
<span class="c1"># 输入直线方程</span>
<span class="n">y</span><span class="o">=</span><span class="mf">0.5</span><span class="o">*</span><span class="n">x</span> <span class="o">+</span> <span class="mi">3</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="s2">"orange"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Straight line"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="通过2点确定一条直线">通过2点确定一条直线<a class="anchor-link" href="#通过2点确定一条直线">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 2点(1,3) (4,5) 确定一条直线</span>
<span class="c1"># 导入线性回归模型</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">LinearRegression</span>
<span class="c1"># 输入2个点的横坐标</span>
<span class="n">X</span><span class="o">=</span><span class="p">[[</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">4</span><span class="p">]]</span>
<span class="c1"># 输入2个点的纵坐标</span>
<span class="n">y</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">]</span>
<span class="c1"># 用线性模型拟合这2个点</span>
<span class="n">lr</span><span class="o">=</span><span class="n">LinearRegression</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="c1"># 画出2个点和直线</span>
<span class="n">z</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span> <span class="mi">20</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">,</span><span class="n">s</span><span class="o">=</span><span class="mi">80</span><span class="p">)</span> <span class="c1">#画2个点</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">z</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">z</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">)),</span> <span class="n">c</span><span class="o">=</span><span class="s1">'k'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Straight line"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1"># 输出该直线的方程</span>
<span class="n">w</span><span class="o">=</span><span class="n">lr</span><span class="o">.</span><span class="n">coef_</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">b</span><span class="o">=</span><span class="n">lr</span><span class="o">.</span><span class="n">intercept_</span>
<span class="nb">print</span><span class="p">(</span> <span class="s2">"y = </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">w</span><span class="p">),</span> <span class="s2">"x"</span><span class="p">,</span> <span class="s2">" + </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">b</span><span class="p">)</span> <span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>y = 0.667 x + 2.333
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">lr</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[3]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>LinearRegression()</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="如果是3个点呢?">如果是3个点呢?<a class="anchor-link" href="#如果是3个点呢?">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 2点(1,3) (4,5) (3,3)确定一条直线</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">LinearRegression</span>
<span class="n">X</span><span class="o">=</span><span class="p">[[</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">]]</span>
<span class="n">y</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span>
<span class="c1"># 拟合</span>
<span class="n">lr</span><span class="o">=</span><span class="n">LinearRegression</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="c1"># 画图</span>
<span class="n">z</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span> <span class="mi">20</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">,</span><span class="n">s</span><span class="o">=</span><span class="mi">80</span><span class="p">)</span> <span class="c1">#画2个点</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">z</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">z</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">)),</span> <span class="n">c</span><span class="o">=</span><span class="s1">'k'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Straight line"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1"># 输出该直线的方程</span>
<span class="n">w</span><span class="o">=</span><span class="n">lr</span><span class="o">.</span><span class="n">coef_</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">b</span><span class="o">=</span><span class="n">lr</span><span class="o">.</span><span class="n">intercept_</span>
<span class="nb">print</span><span class="p">(</span> <span class="s2">"y = </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">w</span><span class="p">),</span> <span class="s2">"x"</span><span class="p">,</span> <span class="s2">" + </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">b</span><span class="p">)</span> <span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>y = 0.571 x + 2.143
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="生成更多点,做线性拟合">生成更多点,做线性拟合<a class="anchor-link" href="#生成更多点,做线性拟合">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="k">import</span> <span class="n">make_regression</span>
<span class="c1">#生成用于回归分析的数据</span>
<span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="o">=</span><span class="n">make_regression</span><span class="p">(</span><span class="n">n_samples</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">n_features</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">n_informative</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">noise</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># 线性拟合</span>
<span class="n">reg</span><span class="o">=</span><span class="n">LinearRegression</span><span class="p">()</span>
<span class="n">reg</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">)</span>
<span class="c1"># 生成等差数列z作为横轴,画线性模型的图形</span>
<span class="n">z</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span> <span class="mi">200</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="s1">'b'</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="mi">60</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">z</span><span class="p">,</span> <span class="n">reg</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">z</span><span class="p">),</span> <span class="n">c</span><span class="o">=</span><span class="s1">'k'</span><span class="p">)</span> <span class="c1">#预测每个x对应的y</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Linear regression"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1"># 输出该直线的方程</span>
<span class="n">w</span><span class="o">=</span><span class="n">reg</span><span class="o">.</span><span class="n">coef_</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">b</span><span class="o">=</span><span class="n">reg</span><span class="o">.</span><span class="n">intercept_</span>
<span class="nb">print</span><span class="p">(</span> <span class="s2">"y = </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">w</span><span class="p">),</span> <span class="s2">"x"</span><span class="p">,</span> <span class="s2">" + </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">b</span><span class="p">)</span> <span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>y = 79.525 x + 10.922
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="最基本的线性模型---线性回归">最基本的线性模型 - 线性回归<a class="anchor-link" href="#最基本的线性模型---线性回归">¶</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="无噪音模拟数据">无噪音模拟数据<a class="anchor-link" href="#无噪音模拟数据">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="k">import</span> <span class="n">make_regression</span>
<span class="c1"># 导入数据集拆分工具</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">train_test_split</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">LinearRegression</span>
<span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="o">=</span><span class="n">make_regression</span><span class="p">(</span><span class="n">n_samples</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">n_features</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">n_informative</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">38</span><span class="p">)</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">8</span><span class="p">)</span>
<span class="n">lr</span><span class="o">=</span><span class="n">LinearRegression</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 打印出模型</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"coef:"</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">coef_</span><span class="p">[:])</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"intercept:"</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">intercept_</span><span class="p">)</span>
<span class="c1"># y=w1*x1 +w2*x2 + b</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>coef: [70.38592453 7.43213621]
intercept: -7.105427357601002e-15
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 打分</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training set:"</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"tesing set:"</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span>
<span class="c1"># 完全对的原因,是因为没有添加noise!真实世界的数据,噪音是很大的。</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>training set: 1.0
tesing set: 1.0
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="载入真实数据---糖尿病数据">载入真实数据 - 糖尿病数据<a class="anchor-link" href="#载入真实数据---糖尿病数据">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 导入数据集拆分工具</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">train_test_split</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">LinearRegression</span>
<span class="c1"># 载入数据</span>
<span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="k">import</span> <span class="n">load_diabetes</span>
<span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="o">=</span><span class="n">load_diabetes</span><span class="p">()</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="n">load_diabetes</span><span class="p">()</span><span class="o">.</span><span class="n">target</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">8</span><span class="p">)</span>
<span class="n">lr</span><span class="o">=</span><span class="n">LinearRegression</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 打印出模型</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"coef:"</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">coef_</span><span class="p">[:])</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"intercept:"</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">intercept_</span><span class="p">)</span>
<span class="c1"># y=w1*x1 +w2*x2 + b</span>
<span class="c1"># 打分</span>
<span class="nb">print</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training set:"</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"tesing set:"</span><span class="p">,</span> <span class="n">lr</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span>
<span class="c1"># 分别是0.53 和0.46,打分降低了很多!</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>coef: [ 11.5106203 -282.51347161 534.20455671 401.73142674
-1043.89718398 634.92464089 186.43262636 204.93373199
762.47149733 91.9460394 ]
intercept: 152.5624877455247
training set: 0.5303814759709331
tesing set: 0.4593440496691642
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="使用L2正则化的线性模型---岭回归">使用L2正则化的线性模型 - 岭回归<a class="anchor-link" href="#使用L2正则化的线性模型---岭回归">¶</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>保留全部特征变量,只是降低特征变量的系数来避免过拟合的方法,称为L2正则化。</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="糖尿病数据集---岭回归">糖尿病数据集 - 岭回归<a class="anchor-link" href="#糖尿病数据集---岭回归">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 导入数据集拆分工具</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">train_test_split</span>
<span class="c1"># 载入数据</span>
<span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="k">import</span> <span class="n">load_diabetes</span>
<span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="o">=</span><span class="n">load_diabetes</span><span class="p">()</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="n">load_diabetes</span><span class="p">()</span><span class="o">.</span><span class="n">target</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">8</span><span class="p">)</span>
<span class="c1"># 导入岭回归</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">Ridge</span>
<span class="c1"># 使用岭回归对数据进行拟合</span>
<span class="n">ridge</span><span class="o">=</span><span class="n">Ridge</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 打印出模型</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"coef:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">coef_</span><span class="p">[:])</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"intercept:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">intercept_</span><span class="p">)</span>
<span class="c1"># y=w1*x1 +w2*x2 + b</span>
<span class="c1"># 打分</span>
<span class="nb">print</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training set:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"tesing set:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span>
<span class="c1"># 分别是 0.43 和 0.43,打分接近</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>coef: [ 36.8262072 -75.80823733 282.42652716 207.39314972 -1.46580263
-27.81750835 -134.3740951 98.97724793 222.67543268 117.97255343]
intercept: 152.553545058867
training set: 0.4326376676137663
tesing set: 0.4325217769068186
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>可以说,复杂度越低的模型,在训练集上表现越差,但是其泛化能力会更好。</p>
<p>如果在意泛化能力,则应该选择岭回归,而不是线性回归模型</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="岭回归的参数调节">岭回归的参数调节<a class="anchor-link" href="#岭回归的参数调节">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">Ridge</span>
<span class="c1"># 使用岭回归对数据进行拟合,设置 alpha=10</span>
<span class="n">ridge</span><span class="o">=</span><span class="n">Ridge</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 打印出模型</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"coef:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">coef_</span><span class="p">[:])</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"intercept:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">intercept_</span><span class="p">)</span>
<span class="c1"># y=w1*x1 +w2*x2 + b</span>
<span class="c1"># 打分</span>
<span class="nb">print</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training set:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"tesing set:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span>
<span class="c1"># 分别是 0.15 和 0.16,测试集打分超过训练集了</span>
<span class="c1"># 也就是说,如果模型过拟合,可以通过提高 alpha 值来降低过拟合现象。</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>coef: [ 15.08676646 -1.9586191 60.69903425 47.11843221 14.72337546
9.87779644 -35.56015266 35.74603575 54.27193163 37.42095846]
intercept: 152.7585777843719
training set: 0.15119962367011153
tesing set: 0.16202013428866247
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>降低 alpha 值会让系数的限制变得不那么严格。当alpha很小时,限制可以忽略不计,非常接近线性回归。</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">Ridge</span>
<span class="c1"># 使用岭回归对数据进行拟合,设置 alpha=0.1</span>
<span class="n">ridge</span><span class="o">=</span><span class="n">Ridge</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mf">0.1</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 打印出模型</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"coef:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">coef_</span><span class="p">[:])</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"intercept:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">intercept_</span><span class="p">)</span>
<span class="c1"># y=w1*x1 +w2*x2 + b</span>
<span class="c1"># 打分</span>
<span class="nb">print</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training set:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"tesing set:"</span><span class="p">,</span> <span class="n">ridge</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span>
<span class="c1"># 分别是 0.52 和 0.47</span>
<span class="c1"># 相比线性模型,alpha很小时,训练集打分略降低,而测试集打分略提高。</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>coef: [ 24.77802114 -228.33364296 495.54594378 361.21481169 -109.82542594
-78.3286822 -190.69780344 108.24040795 383.72269392 107.42593373]
intercept: 152.48093836963517
training set: 0.521564605524134
tesing set: 0.4734019500945309
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="alpha值对模型的影响">alpha值对模型的影响<a class="anchor-link" href="#alpha值对模型的影响">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>画图展示 不同 alpha 值对应的模型的 coef_ 属性。</li>
<li>较高的 alpha 值表示模型的限制更加严格。</li>
<li>所以我们认为,alpha值越高,coef<em>属性的数值会更小,反之 coef</em> 属性的值更大。</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="c1"># alpha=0.1 时的模型系数</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ridge</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mf">0.1</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span><span class="o">.</span><span class="n">coef_</span><span class="p">,</span> <span class="s1">'o'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">"Ridge alpha=0.1"</span><span class="p">)</span>
<span class="c1"># alpha=1 时的模型系数</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ridge</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span><span class="o">.</span><span class="n">coef_</span><span class="p">,</span> <span class="s1">'s'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">"Ridge alpha=1"</span><span class="p">)</span>
<span class="c1"># alpha=10 时的模型系数</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ridge</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span><span class="o">.</span><span class="n">coef_</span><span class="p">,</span> <span class="s1">'^'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">"Ridge alpha=10"</span><span class="p">)</span>
<span class="c1"># 绘制线性回归的系数作为对比</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">LinearRegression</span>
<span class="n">lr</span><span class="o">=</span><span class="n">LinearRegression</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">lr</span><span class="o">.</span><span class="n">coef_</span><span class="p">,</span> <span class="s2">"o"</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">"linear regression"</span><span class="p">)</span>
<span class="c1">#</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"coefficient index"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"coefficent magnitude"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">hlines</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">lr</span><span class="o">.</span><span class="n">coef_</span><span class="p">))</span> <span class="c1">#水平直线,过原点</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="数据集大小对岭回归的影响---学习曲线">数据集大小对岭回归的影响 - 学习曲线<a class="anchor-link" href="#数据集大小对岭回归的影响---学习曲线">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>另一个理解正则化对模型影响的方法,就是固定alpha值,该不安训练集的数据量。</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">learning_curve</span><span class="p">,</span> <span class="n">KFold</span>
<span class="c1"># 定义一个绘制学习曲线的函数</span>
<span class="k">def</span> <span class="nf">plot_learning_curve</span><span class="p">(</span><span class="n">est</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="c1"># 对数据进行20次拆分用来对模型进行评分</span>
<span class="n">training_set_size</span><span class="p">,</span> <span class="n">train_scores</span><span class="p">,</span> <span class="n">test_scores</span><span class="o">=</span><span class="n">learning_curve</span><span class="p">(</span>
<span class="n">est</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">train_sizes</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">cv</span><span class="o">=</span><span class="n">KFold</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span><span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
<span class="n">estimator_name</span><span class="o">=</span><span class="n">est</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span>
<span class="n">line</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">training_set_size</span><span class="p">,</span> <span class="n">train_scores</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span> <span class="s1">'--'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">"training "</span><span class="o">+</span><span class="n">estimator_name</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">training_set_size</span><span class="p">,</span> <span class="n">test_scores</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span> <span class="s1">'-'</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s2">"test "</span><span class="o">+</span><span class="n">estimator_name</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="n">line</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">get_color</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Training set size"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"Score"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.1</span><span class="p">)</span>
<span class="n">plot_learning_curve</span><span class="p">(</span><span class="n">Ridge</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">plot_learning_curve</span><span class="p">(</span><span class="n">LinearRegression</span><span class="p">(),</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">),</span> <span class="n">ncol</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">11</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[5]:</div>
<div class="output_text output_subarea output_execute_result">
<pre><matplotlib.legend.Legend at 0x7f5c2bec9630></pre>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>可见,数据量小的时候,岭回归的训练集和测试集表现差不多,而普通线性回归则差异很大。</li>
<li>当数据量很大时,正则化就没那么重要了,两者表现一致。</li>
<li>随着数据量的增大,线性回归在训练集上的得分是下降的;说明数据量越大,线性回归越不容易过拟合,或者越难记住已知数据。</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="岭迹图-x=alpha,-y=coef">岭迹图 x=alpha, y=coef<a class="anchor-link" href="#岭迹图-x=alpha,-y=coef">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">np</span><span class="o">.</span><span class="n">logspace</span><span class="p">(</span><span class="o">-</span><span class="mi">10</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">4</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[6]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>array([1.e-10, 1.e-06, 1.e-02, 1.e+02])</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 创建 alpha 集合</span>
<span class="n">alphas</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">logspace</span><span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span> <span class="c1"># -3 到 2 取100份</span>
<span class="c1"># 计算对应的 coef</span>
<span class="n">coefs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">alpha</span> <span class="ow">in</span> <span class="n">alphas</span><span class="p">:</span>
<span class="c1"># 获取模型 设置参数</span>
<span class="c1"># 通过修改Ridge(fit_intercept=False),来让岭回归模型来关闭差值,不让差值调整结果值,这样我们获得的斜率就不是0了。</span>
<span class="n">rr</span> <span class="o">=</span> <span class="n">Ridge</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="n">alpha</span><span class="p">,</span> <span class="n">fit_intercept</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">rr</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">coefs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">rr</span><span class="o">.</span><span class="n">coef_</span><span class="p">)</span>
<span class="c1"># 绘图</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">alphas</span><span class="p">,</span><span class="n">coefs</span><span class="p">)</span>
<span class="c1"># 设置坐标轴 不是以均匀的方式展示 设置x轴线 而是 以10的倍数来显示</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xscale</span><span class="p">(</span><span class="s1">'log'</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Alpha"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"Coef"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="使用-L1-正则化的线性模型---套索回归-lasso">使用 L1 正则化的线性模型 - 套索回归 lasso<a class="anchor-link" href="#使用-L1-正则化的线性模型---套索回归-lasso">¶</a></h1>
</div>