-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsklearn_tree_RF.html
2250 lines (1883 loc) · 305 KB
/
sklearn_tree_RF.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>sklearn_tree_RF</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
<link rel="stylesheet" type="text/css" href="/static/css/md_notebook.css" />
<!-- Load mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML-full,Safe"> </script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
init_mathjax = function() {
if (window.MathJax) {
// MathJax loaded
MathJax.Hub.Config({
TeX: {
equationNumbers: {
autoNumber: "AMS",
useLabelIds: true
}
},
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true,
processEnvironments: true
},
displayAlign: 'center',
CommonHTML: {
linebreaks: {
automatic: true
}
}
});
MathJax.Hub.Queue(["Typeset", MathJax.Hub]);
}
}
init_mathjax();
</script>
<!-- End of mathjax configuration --></head>
<body class="jp-Notebook" data-jp-theme-light="true" data-jp-theme-name="JupyterLab Light">
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="%E5%86%B3%E7%AD%96%E6%A0%91">决策树<a class="anchor-link" href="#%E5%86%B3%E7%AD%96%E6%A0%91">¶</a></h1>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h2 id="%E5%86%B3%E7%AD%96%E6%A0%91%E7%9A%84%E6%9E%84%E5%BB%BA%EF%BC%88%E6%9C%80%E5%A4%A7%E5%86%B3%E7%AD%96%E6%B7%B1%E5%BA%A6=1%EF%BC%89">决策树的构建(最大决策深度=1)<a class="anchor-link" href="#%E5%86%B3%E7%AD%96%E6%A0%91%E7%9A%84%E6%9E%84%E5%BB%BA%EF%BC%88%E6%9C%80%E5%A4%A7%E5%86%B3%E7%AD%96%E6%B7%B1%E5%BA%A6=1%EF%BC%89">¶</a></h2>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="c1"># 画图工具</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">matplotlib.colors</span> <span class="kn">import</span> <span class="n">ListedColormap</span>
<span class="c1"># 导入 tree 模型和数据集加载工具</span>
<span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">tree</span><span class="p">,</span> <span class="n">datasets</span>
<span class="c1"># 导入拆分工具</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <span class="n">train_test_split</span>
<span class="n">wine</span><span class="o">=</span><span class="n">datasets</span><span class="o">.</span><span class="n">load_wine</span><span class="p">()</span>
<span class="c1"># 只选取数据集的前2个特征,为了图形方便展示</span>
<span class="n">X</span><span class="o">=</span><span class="n">wine</span><span class="o">.</span><span class="n">data</span><span class="p">[:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span>
<span class="n">y</span><span class="o">=</span><span class="n">wine</span><span class="o">.</span><span class="n">target</span>
<span class="c1"># 将数据集拆分</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">8</span><span class="p">)</span>
<span class="c1"># 设定决策树分类器的最大深度为1</span>
<span class="n">clf</span><span class="o">=</span><span class="n">tree</span><span class="o">.</span><span class="n">DecisionTreeClassifier</span><span class="p">(</span><span class="n">max_depth</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># 拟合</span>
<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 输出打分</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training score: </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">clf</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span> <span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"testing score: </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">clf</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span> <span class="p">)</span>
<span class="c1"># 最关键的参数就是 max_depth,就是问问题的数量,只能回答yes / no.</span>
<span class="c1"># 问的问题越多,表示决策树的深度越深。</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>training score: 0.692
testing score: 0.622
</pre>
</div>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 可视化</span>
<span class="c1"># 定义图像中分区的颜色和散点的颜色</span>
<span class="n">cmap_light</span><span class="o">=</span><span class="n">ListedColormap</span><span class="p">([</span><span class="s2">"#FFAAAA"</span><span class="p">,</span> <span class="s2">"#AAFFAA"</span><span class="p">,</span> <span class="s2">"#AAAAFF"</span><span class="p">])</span>
<span class="n">cmap_bold</span><span class="o">=</span><span class="n">ListedColormap</span><span class="p">([</span><span class="s2">"#FF0000"</span><span class="p">,</span> <span class="s2">"#00FF00"</span><span class="p">,</span> <span class="s2">"#0000FF"</span><span class="p">])</span>
<span class="c1"># 分别用样本的2个特征创建图形和x/y轴</span>
<span class="n">x_min</span><span class="p">,</span> <span class="n">x_max</span><span class="o">=</span> <span class="n">X_train</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">min</span><span class="p">()</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">X_train</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">max</span><span class="p">()</span><span class="o">+</span><span class="mi">1</span>
<span class="n">y_min</span><span class="p">,</span> <span class="n">y_max</span><span class="o">=</span> <span class="n">X_train</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">min</span><span class="p">()</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">X_train</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">max</span><span class="p">()</span><span class="o">+</span><span class="mi">1</span>
<span class="n">xx</span><span class="p">,</span> <span class="n">yy</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">x_min</span><span class="p">,</span> <span class="n">x_max</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">),</span>
<span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">y_min</span><span class="p">,</span> <span class="n">y_max</span><span class="p">,</span> <span class="mf">0.02</span><span class="p">))</span>
<span class="n">Z</span><span class="o">=</span><span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">c_</span><span class="p">[</span><span class="n">xx</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">ravel</span><span class="p">()])</span>
<span class="c1"># 给每个分类中的样本分配不同的颜色</span>
<span class="n">Z</span><span class="o">=</span><span class="n">Z</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">pcolormesh</span><span class="p">(</span><span class="n">xx</span><span class="p">,</span> <span class="n">yy</span><span class="p">,</span> <span class="n">Z</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cmap_light</span><span class="p">,</span> <span class="n">shading</span><span class="o">=</span><span class="s1">'auto'</span><span class="p">)</span>
<span class="c1"># 样本散点图</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">X</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">y</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cmap_bold</span><span class="p">,</span> <span class="n">edgecolor</span><span class="o">=</span><span class="s2">"k"</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">xx</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">(</span><span class="n">yy</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Classifier: tree( max_depth = 1)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<blockquote><p>只分2类,分类效果不好,不到 70%。</p>
</blockquote>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h2 id="max_depth=3">max_depth=3<a class="anchor-link" href="#max_depth=3">¶</a></h2>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 尝试加大深度 3</span>
<span class="n">clf2</span><span class="o">=</span><span class="n">tree</span><span class="o">.</span><span class="n">DecisionTreeClassifier</span><span class="p">(</span><span class="n">max_depth</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="c1"># 拟合</span>
<span class="n">clf2</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 输出打分</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training score: </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">clf2</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span> <span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"testing score: </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">clf2</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span> <span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>training score: 0.887
testing score: 0.822
</pre>
</div>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 可视化</span>
<span class="n">Z</span><span class="o">=</span><span class="n">clf2</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">c_</span><span class="p">[</span><span class="n">xx</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">ravel</span><span class="p">()])</span>
<span class="c1"># 给每个分类中的样本分配不同的颜色</span>
<span class="n">Z</span><span class="o">=</span><span class="n">Z</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">pcolormesh</span><span class="p">(</span><span class="n">xx</span><span class="p">,</span> <span class="n">yy</span><span class="p">,</span> <span class="n">Z</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cmap_light</span><span class="p">,</span> <span class="n">shading</span><span class="o">=</span><span class="s1">'auto'</span><span class="p">)</span>
<span class="c1"># 样本散点图</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">X</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">y</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cmap_bold</span><span class="p">,</span> <span class="n">edgecolor</span><span class="o">=</span><span class="s2">"k"</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">xx</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">(</span><span class="n">yy</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Classifier: tree( max_depth = 3)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h2 id="max_depth=5">max_depth=5<a class="anchor-link" href="#max_depth=5">¶</a></h2>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 尝试加大深度 5</span>
<span class="n">clf3</span><span class="o">=</span><span class="n">tree</span><span class="o">.</span><span class="n">DecisionTreeClassifier</span><span class="p">(</span><span class="n">max_depth</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="c1"># 拟合</span>
<span class="n">clf3</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 输出打分</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training score: </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">clf3</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span> <span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"testing score: </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">clf3</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span> <span class="p">)</span>
<span class="c1"># 出现过拟合倾向了,就是训练集效果远好于测试集。</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>training score: 0.925
testing score: 0.778
</pre>
</div>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 可视化</span>
<span class="n">Z</span><span class="o">=</span><span class="n">clf3</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">c_</span><span class="p">[</span><span class="n">xx</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">ravel</span><span class="p">()])</span>
<span class="c1"># 给每个分类中的样本分配不同的颜色</span>
<span class="n">Z</span><span class="o">=</span><span class="n">Z</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">pcolormesh</span><span class="p">(</span><span class="n">xx</span><span class="p">,</span> <span class="n">yy</span><span class="p">,</span> <span class="n">Z</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cmap_light</span><span class="p">,</span> <span class="n">shading</span><span class="o">=</span><span class="s1">'auto'</span><span class="p">)</span>
<span class="c1"># 样本散点图</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">X</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">y</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cmap_bold</span><span class="p">,</span> <span class="n">edgecolor</span><span class="o">=</span><span class="s2">"k"</span><span class="p">,</span> <span class="n">s</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">xx</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">(</span><span class="n">yy</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Classifier: tree( max_depth = 5)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h2 id="%E5%86%B3%E7%AD%96%E6%A0%91%E7%9A%84%E5%8F%AF%E8%A7%86%E5%8C%96%E6%BC%94%E7%A4%BA">决策树的可视化演示<a class="anchor-link" href="#%E5%86%B3%E7%AD%96%E6%A0%91%E7%9A%84%E5%8F%AF%E8%A7%86%E5%8C%96%E6%BC%94%E7%A4%BA">¶</a></h2>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<blockquote><p>pip3 install graphviz -i <a href="https://pypi.douban.com/simple/">https://pypi.douban.com/simple/</a></p>
</blockquote>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">graphviz</span>
<span class="kn">from</span> <span class="nn">sklearn.tree</span> <span class="kn">import</span> <span class="n">export_graphviz</span>
<span class="c1"># 选择 max_depth=3 的决策树进行可视化</span>
<span class="c1"># 输出到文件</span>
<span class="n">export_graphviz</span><span class="p">(</span><span class="n">clf2</span><span class="p">,</span> <span class="n">out_file</span><span class="o">=</span><span class="s2">"wine.dot"</span><span class="p">,</span> <span class="n">class_names</span><span class="o">=</span><span class="n">wine</span><span class="o">.</span><span class="n">target_names</span><span class="p">,</span>
<span class="n">feature_names</span><span class="o">=</span><span class="n">wine</span><span class="o">.</span><span class="n">feature_names</span><span class="p">[:</span><span class="mi">2</span><span class="p">],</span> <span class="n">impurity</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">filled</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># 读文件</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="s2">"wine.dot"</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">dot_graph</span><span class="o">=</span><span class="n">f</span><span class="o">.</span><span class="n">read</span><span class="p">()</span>
<span class="c1"># 可视化</span>
<span class="n">graphviz</span><span class="o">.</span><span class="n">Source</span><span class="p">(</span><span class="n">dot_graph</span><span class="p">)</span>
<span class="c1"># 这种层级关系非常方便向非专业人士解释算法是如何工作的。</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[7]:</div>
<div class="jp-RenderedSVG jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="image/svg+xml">
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Generated by graphviz version 2.43.0 (0)
-->
<!-- Title: Tree Pages: 1 width="1211pt" height="373pt"-->
<svg width="600pt" height="200pt"
viewBox="0.00 0.00 1210.50 373.00" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 369)">
<title>Tree</title>
<polygon fill="white" stroke="transparent" points="-4,4 -4,-369 1206.5,-369 1206.5,4 -4,4"/>
<!-- 0 -->
<g id="node1" class="node">
<title>0</title>
<polygon fill="#e8fcf1" stroke="black" points="661,-365 503,-365 503,-297 661,-297 661,-365"/>
<text text-anchor="middle" x="582" y="-349.8" font-family="Helvetica,sans-Serif" font-size="14.00">alcohol <= 12.745</text>
<text text-anchor="middle" x="582" y="-334.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 133</text>
<text text-anchor="middle" x="582" y="-319.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [45, 55, 33]</text>
<text text-anchor="middle" x="582" y="-304.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_1</text>
</g>
<!-- 1 -->
<g id="node2" class="node">
<title>1</title>
<polygon fill="#5fea99" stroke="black" points="516.5,-261 363.5,-261 363.5,-193 516.5,-193 516.5,-261"/>
<text text-anchor="middle" x="440" y="-245.8" font-family="Helvetica,sans-Serif" font-size="14.00">malic_acid <= 2.96</text>
<text text-anchor="middle" x="440" y="-230.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 56</text>
<text text-anchor="middle" x="440" y="-215.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [0, 47, 9]</text>
<text text-anchor="middle" x="440" y="-200.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_1</text>
</g>
<!-- 0->1 -->
<g id="edge1" class="edge">
<title>0->1</title>
<path fill="none" stroke="black" d="M535.9,-296.88C522.75,-287.44 508.3,-277.06 494.7,-267.29"/>
<polygon fill="black" stroke="black" points="496.52,-264.29 486.36,-261.3 492.44,-269.98 496.52,-264.29"/>
<text text-anchor="middle" x="490.4" y="-282.27" font-family="Helvetica,sans-Serif" font-size="14.00">True</text>
</g>
<!-- 8 -->
<g id="node9" class="node">
<title>8</title>
<polygon fill="#f5cdb1" stroke="black" points="826,-261 664,-261 664,-193 826,-193 826,-261"/>
<text text-anchor="middle" x="745" y="-245.8" font-family="Helvetica,sans-Serif" font-size="14.00">malic_acid <= 2.375</text>
<text text-anchor="middle" x="745" y="-230.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 77</text>
<text text-anchor="middle" x="745" y="-215.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [45, 8, 24]</text>
<text text-anchor="middle" x="745" y="-200.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_0</text>
</g>
<!-- 0->8 -->
<g id="edge8" class="edge">
<title>0->8</title>
<path fill="none" stroke="black" d="M634.92,-296.88C650.37,-287.21 667.39,-276.56 683.34,-266.59"/>
<polygon fill="black" stroke="black" points="685.44,-269.4 692.07,-261.12 681.73,-263.46 685.44,-269.4"/>
<text text-anchor="middle" x="686.46" y="-281.79" font-family="Helvetica,sans-Serif" font-size="14.00">False</text>
</g>
<!-- 2 -->
<g id="node3" class="node">
<title>2</title>
<polygon fill="#46e78a" stroke="black" points="294,-157 154,-157 154,-89 294,-89 294,-157"/>
<text text-anchor="middle" x="224" y="-141.8" font-family="Helvetica,sans-Serif" font-size="14.00">alcohol <= 12.49</text>
<text text-anchor="middle" x="224" y="-126.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 47</text>
<text text-anchor="middle" x="224" y="-111.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [0, 44, 3]</text>
<text text-anchor="middle" x="224" y="-96.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_1</text>
</g>
<!-- 1->2 -->
<g id="edge2" class="edge">
<title>1->2</title>
<path fill="none" stroke="black" d="M369.87,-192.88C348.64,-182.86 325.17,-171.77 303.37,-161.48"/>
<polygon fill="black" stroke="black" points="304.68,-158.23 294.15,-157.12 301.69,-164.56 304.68,-158.23"/>
</g>
<!-- 5 -->
<g id="node6" class="node">
<title>5</title>
<polygon fill="#c09cf2" stroke="black" points="514,-157 366,-157 366,-89 514,-89 514,-157"/>
<text text-anchor="middle" x="440" y="-141.8" font-family="Helvetica,sans-Serif" font-size="14.00">alcohol <= 12.035</text>
<text text-anchor="middle" x="440" y="-126.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 9</text>
<text text-anchor="middle" x="440" y="-111.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [0, 3, 6]</text>
<text text-anchor="middle" x="440" y="-96.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_2</text>
</g>
<!-- 1->5 -->
<g id="edge5" class="edge">
<title>1->5</title>
<path fill="none" stroke="black" d="M440,-192.88C440,-184.78 440,-175.98 440,-167.47"/>
<polygon fill="black" stroke="black" points="443.5,-167.3 440,-157.3 436.5,-167.3 443.5,-167.3"/>
</g>
<!-- 3 -->
<g id="node4" class="node">
<title>3</title>
<polygon fill="#39e581" stroke="black" points="140,-53 0,-53 0,0 140,0 140,-53"/>
<text text-anchor="middle" x="70" y="-37.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 37</text>
<text text-anchor="middle" x="70" y="-22.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [0, 37, 0]</text>
<text text-anchor="middle" x="70" y="-7.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_1</text>
</g>
<!-- 2->3 -->
<g id="edge3" class="edge">
<title>2->3</title>
<path fill="none" stroke="black" d="M170.14,-88.95C154.04,-79.07 136.45,-68.28 120.57,-58.53"/>
<polygon fill="black" stroke="black" points="122.3,-55.48 111.94,-53.24 118.63,-61.45 122.3,-55.48"/>
</g>
<!-- 4 -->
<g id="node5" class="node">
<title>4</title>
<polygon fill="#8ef0b7" stroke="black" points="289.5,-53 158.5,-53 158.5,0 289.5,0 289.5,-53"/>
<text text-anchor="middle" x="224" y="-37.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 10</text>
<text text-anchor="middle" x="224" y="-22.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [0, 7, 3]</text>
<text text-anchor="middle" x="224" y="-7.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_1</text>
</g>
<!-- 2->4 -->
<g id="edge4" class="edge">
<title>2->4</title>
<path fill="none" stroke="black" d="M224,-88.95C224,-80.72 224,-71.85 224,-63.48"/>
<polygon fill="black" stroke="black" points="227.5,-63.24 224,-53.24 220.5,-63.24 227.5,-63.24"/>
</g>
<!-- 6 -->
<g id="node7" class="node">
<title>6</title>
<polygon fill="#39e581" stroke="black" points="438.5,-53 307.5,-53 307.5,0 438.5,0 438.5,-53"/>
<text text-anchor="middle" x="373" y="-37.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 2</text>
<text text-anchor="middle" x="373" y="-22.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [0, 2, 0]</text>
<text text-anchor="middle" x="373" y="-7.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_1</text>
</g>
<!-- 5->6 -->
<g id="edge6" class="edge">
<title>5->6</title>
<path fill="none" stroke="black" d="M416.57,-88.95C410.28,-80.07 403.46,-70.46 397.13,-61.54"/>
<polygon fill="black" stroke="black" points="399.89,-59.37 391.25,-53.24 394.18,-63.42 399.89,-59.37"/>
</g>
<!-- 7 -->
<g id="node8" class="node">
<title>7</title>
<polygon fill="#965ae9" stroke="black" points="587.5,-53 456.5,-53 456.5,0 587.5,0 587.5,-53"/>
<text text-anchor="middle" x="522" y="-37.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 7</text>
<text text-anchor="middle" x="522" y="-22.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [0, 1, 6]</text>
<text text-anchor="middle" x="522" y="-7.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_2</text>
</g>
<!-- 5->7 -->
<g id="edge7" class="edge">
<title>5->7</title>
<path fill="none" stroke="black" d="M468.68,-88.95C476.54,-79.89 485.06,-70.07 492.94,-60.99"/>
<polygon fill="black" stroke="black" points="495.76,-63.08 499.67,-53.24 490.47,-58.5 495.76,-63.08"/>
</g>
<!-- 9 -->
<g id="node10" class="node">
<title>9</title>
<polygon fill="#ea9a61" stroke="black" points="817,-157 673,-157 673,-89 817,-89 817,-157"/>
<text text-anchor="middle" x="745" y="-141.8" font-family="Helvetica,sans-Serif" font-size="14.00">malic_acid <= 1.3</text>
<text text-anchor="middle" x="745" y="-126.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 46</text>
<text text-anchor="middle" x="745" y="-111.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [38, 6, 2]</text>
<text text-anchor="middle" x="745" y="-96.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_0</text>
</g>
<!-- 8->9 -->
<g id="edge9" class="edge">
<title>8->9</title>
<path fill="none" stroke="black" d="M745,-192.88C745,-184.78 745,-175.98 745,-167.47"/>
<polygon fill="black" stroke="black" points="748.5,-167.3 745,-157.3 741.5,-167.3 748.5,-167.3"/>
</g>
<!-- 12 -->
<g id="node13" class="node">
<title>12</title>
<polygon fill="#b083ef" stroke="black" points="1057,-157 909,-157 909,-89 1057,-89 1057,-157"/>
<text text-anchor="middle" x="983" y="-141.8" font-family="Helvetica,sans-Serif" font-size="14.00">alcohol <= 14.185</text>
<text text-anchor="middle" x="983" y="-126.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 31</text>
<text text-anchor="middle" x="983" y="-111.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [7, 2, 22]</text>
<text text-anchor="middle" x="983" y="-96.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_2</text>
</g>
<!-- 8->12 -->
<g id="edge12" class="edge">
<title>8->12</title>
<path fill="none" stroke="black" d="M822.27,-192.88C846.94,-182.31 874.36,-170.56 899.46,-159.8"/>
<polygon fill="black" stroke="black" points="901.14,-162.89 908.95,-155.74 898.38,-156.46 901.14,-162.89"/>
</g>
<!-- 10 -->
<g id="node11" class="node">
<title>10</title>
<polygon fill="#39e581" stroke="black" points="736.5,-53 605.5,-53 605.5,0 736.5,0 736.5,-53"/>
<text text-anchor="middle" x="671" y="-37.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 3</text>
<text text-anchor="middle" x="671" y="-22.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [0, 3, 0]</text>
<text text-anchor="middle" x="671" y="-7.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_1</text>
</g>
<!-- 9->10 -->
<g id="edge10" class="edge">
<title>9->10</title>
<path fill="none" stroke="black" d="M719.12,-88.95C712.1,-79.98 704.49,-70.27 697.44,-61.26"/>
<polygon fill="black" stroke="black" points="700.07,-58.95 691.15,-53.24 694.56,-63.27 700.07,-58.95"/>
</g>
<!-- 11 -->
<g id="node12" class="node">
<title>11</title>
<polygon fill="#e89152" stroke="black" points="895,-53 755,-53 755,0 895,0 895,-53"/>
<text text-anchor="middle" x="825" y="-37.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 43</text>
<text text-anchor="middle" x="825" y="-22.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [38, 3, 2]</text>
<text text-anchor="middle" x="825" y="-7.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_0</text>
</g>
<!-- 9->11 -->
<g id="edge11" class="edge">
<title>9->11</title>
<path fill="none" stroke="black" d="M772.98,-88.95C780.65,-79.89 788.96,-70.07 796.65,-60.99"/>
<polygon fill="black" stroke="black" points="799.42,-63.13 803.21,-53.24 794.08,-58.61 799.42,-63.13"/>
</g>
<!-- 13 -->
<g id="node14" class="node">
<title>13</title>
<polygon fill="#a06bec" stroke="black" points="1053,-53 913,-53 913,0 1053,0 1053,-53"/>
<text text-anchor="middle" x="983" y="-37.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 28</text>
<text text-anchor="middle" x="983" y="-22.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [4, 2, 22]</text>
<text text-anchor="middle" x="983" y="-7.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_2</text>
</g>
<!-- 12->13 -->
<g id="edge13" class="edge">
<title>12->13</title>
<path fill="none" stroke="black" d="M983,-88.95C983,-80.72 983,-71.85 983,-63.48"/>
<polygon fill="black" stroke="black" points="986.5,-63.24 983,-53.24 979.5,-63.24 986.5,-63.24"/>
</g>
<!-- 14 -->
<g id="node15" class="node">
<title>14</title>
<polygon fill="#e58139" stroke="black" points="1202.5,-53 1071.5,-53 1071.5,0 1202.5,0 1202.5,-53"/>
<text text-anchor="middle" x="1137" y="-37.8" font-family="Helvetica,sans-Serif" font-size="14.00">samples = 3</text>
<text text-anchor="middle" x="1137" y="-22.8" font-family="Helvetica,sans-Serif" font-size="14.00">value = [3, 0, 0]</text>
<text text-anchor="middle" x="1137" y="-7.8" font-family="Helvetica,sans-Serif" font-size="14.00">class = class_0</text>
</g>
<!-- 12->14 -->
<g id="edge14" class="edge">
<title>12->14</title>
<path fill="none" stroke="black" d="M1036.86,-88.95C1052.96,-79.07 1070.55,-68.28 1086.43,-58.53"/>
<polygon fill="black" stroke="black" points="1088.37,-61.45 1095.06,-53.24 1084.7,-55.48 1088.37,-61.45"/>
</g>
</g>
</svg>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h2 id="max_depth%E4%B8%8E%E6%89%93%E5%88%86%E6%9B%B2%E7%BA%BF">max_depth与打分曲线<a class="anchor-link" href="#max_depth%E4%B8%8E%E6%89%93%E5%88%86%E6%9B%B2%E7%BA%BF">¶</a></h2>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">getScore</span><span class="p">(</span><span class="n">depth</span><span class="p">):</span>
<span class="c1"># 尝试加大深度 5</span>
<span class="n">clf</span><span class="o">=</span><span class="n">tree</span><span class="o">.</span><span class="n">DecisionTreeClassifier</span><span class="p">(</span><span class="n">max_depth</span><span class="o">=</span><span class="n">depth</span><span class="p">)</span>
<span class="c1"># 拟合</span>
<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 输出打分</span>
<span class="k">return</span> <span class="p">[</span><span class="n">clf</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">),</span> <span class="n">clf</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)]</span>
<span class="n">scores</span><span class="o">=</span><span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">10</span><span class="p">):</span>
<span class="n">scores</span><span class="o">.</span><span class="n">append</span><span class="p">(</span> <span class="n">getScore</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="p">)</span>
<span class="n">scores</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">scores</span><span class="p">)</span>
<span class="n">scores</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[8]:</div>
<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>array([[0.69172932, 0.62222222],
[0.82706767, 0.77777778],
[0.88721805, 0.82222222],
[0.90977444, 0.77777778],
[0.92481203, 0.77777778],
[0.94736842, 0.73333333],
[0.96992481, 0.75555556],
[0.9924812 , 0.73333333],
[1. , 0.73333333]])</pre>
</div>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">scores</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s2">"trainning score"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">scores</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s2">"testing score"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Max_depth"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"Score"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="%E9%9A%8F%E6%9C%BA%E6%A3%AE%E6%9E%97">随机森林<a class="anchor-link" href="#%E9%9A%8F%E6%9C%BA%E6%A3%AE%E6%9E%97">¶</a></h1>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<ul>
<li>随机森林也称为 随机决策森林,是一种集合学习方法,既可用于分类,也可用于回归。</li>
<li>集合算法,包括 随机森林(Random Forests)和梯度上升决策树(Gradient Boosted Decision Tree, GBDT)。</li>
</ul>
<p>随机森林是把不同的几棵决策树打包到一起,每棵树的参数都不相同,然后我们取每棵树预测结果的平均值。</p>
<ul>
<li>这样既可以保留决策树们的工作成效,又可以降低过拟合的风险。</li>
<li>可以用数学公式推导。略。</li>
</ul>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h2 id="%E7%BB%A7%E7%BB%AD%E4%BD%BF%E7%94%A8-wine-%E6%95%B0%E6%8D%AE%E9%9B%86">继续使用 wine 数据集<a class="anchor-link" href="#%E7%BB%A7%E7%BB%AD%E4%BD%BF%E7%94%A8-wine-%E6%95%B0%E6%8D%AE%E9%9B%86">¶</a></h2>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># 导入随机森林分类器</span>
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <span class="n">RandomForestClassifier</span>
<span class="c1"># 导入拆分工具</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <span class="n">train_test_split</span>
<span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">tree</span><span class="p">,</span> <span class="n">datasets</span>
<span class="n">wine</span><span class="o">=</span><span class="n">datasets</span><span class="o">.</span><span class="n">load_wine</span><span class="p">()</span>
<span class="c1"># 只选取数据集的前2个特征,为了图形方便展示</span>
<span class="n">X</span><span class="o">=</span><span class="n">wine</span><span class="o">.</span><span class="n">data</span><span class="p">[:,</span> <span class="p">:</span><span class="mi">2</span><span class="p">]</span>
<span class="n">y</span><span class="o">=</span><span class="n">wine</span><span class="o">.</span><span class="n">target</span>
<span class="c1"># 将数据集拆分</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">8</span><span class="p">)</span>
<span class="c1"># 设定随机森林有6棵树</span>
<span class="n">forest</span><span class="o">=</span><span class="n">RandomForestClassifier</span><span class="p">(</span><span class="n">n_estimators</span><span class="o">=</span><span class="mi">6</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="c1"># 拟合</span>
<span class="n">forest</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># 输出打分</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"training score: </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">forest</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">))</span> <span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"testing score: </span><span class="si">{:.3f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">forest</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">))</span> <span class="p">)</span>
<span class="c1"># 测试集的结果比训练集明显差,已经过拟合了。</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>training score: 0.977
testing score: 0.778
</pre>
</div>
</div>
</div>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
<div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">help</span><span class="p">(</span><span class="n">RandomForestClassifier</span><span class="p">)</span>
<span class="c1"># bootstrap=True 是一个重要的参数,也是默认值。</span>
<span class="c1"># 每棵树都是随机的样本,而每棵树也会选择不同的特征,保证每棵树都是不同的。</span>
<span class="c1"># max_feature 也是一个重要的参数,默认是 auto=sqrt(特征数量)。太少则每棵树差异太大,太大则每棵树基本都一样。</span>
<span class="c1"># n_estimators 是决策树的数量。这些树的概率投票决定着随机森林的输出。</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="jp-Cell-outputWrapper">
<div class="jp-OutputArea jp-Cell-outputArea">
<div class="jp-OutputArea-child">
<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre style="max-height:300px; background: #eee;">Help on class RandomForestClassifier in module sklearn.ensemble._forest:
class RandomForestClassifier(ForestClassifier)
| RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)
|
| A random forest classifier.
|
| A random forest is a meta estimator that fits a number of decision tree
| classifiers on various sub-samples of the dataset and uses averaging to
| improve the predictive accuracy and control over-fitting.
| The sub-sample size is controlled with the `max_samples` parameter if
| `bootstrap=True` (default), otherwise the whole dataset is used to build
| each tree.
|
| Read more in the :ref:`User Guide <forest>`.
|
| Parameters
| ----------
| n_estimators : int, default=100
| The number of trees in the forest.
|
| .. versionchanged:: 0.22
| The default value of ``n_estimators`` changed from 10 to 100
| in 0.22.
|
| criterion : {"gini", "entropy"}, default="gini"
| The function to measure the quality of a split. Supported criteria are
| "gini" for the Gini impurity and "entropy" for the information gain.
| Note: this parameter is tree-specific.
|
| max_depth : int, default=None
| The maximum depth of the tree. If None, then nodes are expanded until
| all leaves are pure or until all leaves contain less than
| min_samples_split samples.
|
| min_samples_split : int or float, default=2
| The minimum number of samples required to split an internal node:
|
| - If int, then consider `min_samples_split` as the minimum number.
| - If float, then `min_samples_split` is a fraction and
| `ceil(min_samples_split * n_samples)` are the minimum
| number of samples for each split.
|
| .. versionchanged:: 0.18
| Added float values for fractions.
|
| min_samples_leaf : int or float, default=1
| The minimum number of samples required to be at a leaf node.
| A split point at any depth will only be considered if it leaves at
| least ``min_samples_leaf`` training samples in each of the left and
| right branches. This may have the effect of smoothing the model,
| especially in regression.
|
| - If int, then consider `min_samples_leaf` as the minimum number.
| - If float, then `min_samples_leaf` is a fraction and
| `ceil(min_samples_leaf * n_samples)` are the minimum
| number of samples for each node.
|
| .. versionchanged:: 0.18
| Added float values for fractions.
|
| min_weight_fraction_leaf : float, default=0.0
| The minimum weighted fraction of the sum total of weights (of all
| the input samples) required to be at a leaf node. Samples have
| equal weight when sample_weight is not provided.
|
| max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
| The number of features to consider when looking for the best split:
|
| - If int, then consider `max_features` features at each split.
| - If float, then `max_features` is a fraction and
| `round(max_features * n_features)` features are considered at each
| split.
| - If "auto", then `max_features=sqrt(n_features)`.
| - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
| - If "log2", then `max_features=log2(n_features)`.
| - If None, then `max_features=n_features`.
|
| Note: the search for a split does not stop until at least one
| valid partition of the node samples is found, even if it requires to
| effectively inspect more than ``max_features`` features.
|
| max_leaf_nodes : int, default=None
| Grow trees with ``max_leaf_nodes`` in best-first fashion.
| Best nodes are defined as relative reduction in impurity.
| If None then unlimited number of leaf nodes.
|
| min_impurity_decrease : float, default=0.0
| A node will be split if this split induces a decrease of the impurity
| greater than or equal to this value.
|
| The weighted impurity decrease equation is the following::
|
| N_t / N * (impurity - N_t_R / N_t * right_impurity
| - N_t_L / N_t * left_impurity)
|
| where ``N`` is the total number of samples, ``N_t`` is the number of
| samples at the current node, ``N_t_L`` is the number of samples in the
| left child, and ``N_t_R`` is the number of samples in the right child.
|