-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
76 lines (63 loc) · 2.57 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import pandas as pd
from utils.eval_utils import eval_from_csv
import yaml
import argparse
import os
import os.path as osp
import json
if __name__ == '__main__':
# choose which results to evaluate
possible_results_folder_names = os.listdir('results')
possible_results_folder_names = [osp.join('results',x) for x in possible_results_folder_names]
parser = argparse.ArgumentParser()
parser.add_argument("-R","--results_folder_path",
required=True,
type=str,
choices=possible_results_folder_names,
help='Path to results folder')
parser.add_argument("--dataset_name",
required=False,
type=str,
help="When eval old results, the parameter dataset-name is missing")
parser.add_argument("-P","--partial_results_nr_examples",
required=False,
type=int,
default=None,
help='Evaluate part of results by giving index to split the result csv.')
args = parser.parse_args()
# parse choice
results_path = args.results_folder_path
f = open (osp.join(results_path,'options.json'), "r")
options = json.loads(f.read())
if args.dataset_name:
dataset_name = args.dataset_name
else:
dataset_name = options['DATASET-NAME']
# load dataset variables
with open('config.yaml','r') as f:
config = yaml.safe_load(f)
if 'FP' in dataset_name:
benchmark_path = options['BENCHMARK-PATH']
benchmark_type = benchmark_path.split('/')[-1].split('-')
# case for FPv1
if len(benchmark_type) == 1:
benchmark_type = 'FPV1'
# and case for FP-{R,T,O}-{E,M,H}
else:
benchmark_type = f'{benchmark_type[-2]}-{benchmark_type[-1]}' # FIXED-E or FIXED-M
config = config['DATASET-VARS']['FP']
THR_ROT = config['THR-ROT']
THR_TRANS = config['THR-TRANS']
NR_EXAMPLES = config[benchmark_type][dataset_name]['N']
else:
config = config['DATASET-VARS'][dataset_name]
THR_ROT = config['THR-ROT']
THR_TRANS = config['THR-TRANS']
NR_EXAMPLES = config['N']
results_df = pd.read_csv(osp.join(results_path,'results.csv'))
if args.partial_results_nr_examples:
results_df = results_df.loc[:args.partial_results_nr_examples-1,:]
eval_from_csv(data=results_df,
thr_rot= THR_ROT,
thr_trans= THR_TRANS,
M = NR_EXAMPLES)