This repository has been archived by the owner on Dec 4, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaudio_i2s.c
645 lines (577 loc) · 26 KB
/
audio_i2s.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// Modified by Elehobica, 2021
#include <stdio.h>
#include "pico/stdlib.h"
#include "pico/multicore.h"
#include "hardware/pio.h"
#include "hardware/gpio.h"
#include "hardware/dma.h"
#include "hardware/irq.h"
#include "hardware/clocks.h"
#include "hardware/structs/dma.h"
#include "hardware/regs/dreq.h"
#include "audio_i2s.pio.h"
#include "audio_i2s.h"
//#define CORE1_PROCESS_I2S_CALLBACK // Multi-Core Processing Mode (Experimentally Single-Core seems better)
//#define WATCH_DMA_TRANSFER_INTERVAL // Activate only for analysis because of watch overhead
//#define WATCH_PIO_SM_TX_FIFO_LEVEL // Activate only for analysis because of watch overhead
CU_REGISTER_DEBUG_PINS(audio_timing)
// ---- select at most one ---
//CU_SELECT_DEBUG_PINS(audio_timing)
#define audio_pio __CONCAT(pio, PICO_AUDIO_I2S_PIO)
#define GPIO_FUNC_PIOx __CONCAT(GPIO_FUNC_PIO, PICO_AUDIO_I2S_PIO)
#define DREQ_PIOx_TX0 __CONCAT(__CONCAT(DREQ_PIO, PICO_AUDIO_I2S_PIO), _TX0)
#define dma_intsx __CONCAT(dma_hw->ints, PICO_AUDIO_I2S_DMA_IRQ)
#define dma_channel_set_irqx_enabled __CONCAT(__CONCAT(dma_channel_set_irq, PICO_AUDIO_I2S_DMA_IRQ),_enabled)
#define DMA_IRQ_x __CONCAT(DMA_IRQ_, PICO_AUDIO_I2S_DMA_IRQ)
static uint loaded_offset = 0;
static const audio_format_t *_i2s_input_audio_format;
static const audio_format_t *_i2s_output_audio_format;
struct {
audio_buffer_t *playing_buffer;
uint32_t freq;
uint8_t pio_sm;
uint8_t dma_channel;
} shared_state;
audio_format_t pio_i2s_consumer_format;
audio_buffer_format_t pio_i2s_consumer_buffer_format = {
.format = &pio_i2s_consumer_format,
};
static audio_buffer_pool_t *audio_i2s_consumer;
static audio_buffer_t silence_buffer;
static void __isr __time_critical_func(audio_i2s_dma_irq_handler)();
#ifdef WATCH_PIO_SM_TX_FIFO_LEVEL
static inline uint32_t _millis(void)
{
return to_ms_since_boot(get_absolute_time());
}
#endif // WATCH_PIO_SM_TX_FIFO_LEVEL
#ifdef WATCH_DMA_TRANSFER_INTERVAL
static inline uint32_t _micros(void)
{
return to_us_since_boot(get_absolute_time());
}
#endif // WATCH_DMA_TRANSFER_INTERVAL
// i2s callback function to be defined at external
/*__attribute__((weak))
void i2s_callback_func()
{
uint32_t time = to_ms_since_boot(get_absolute_time());
printf("i2s_callback_func %d\n", time);
return;
}
*/
#ifdef CORE1_PROCESS_I2S_CALLBACK
enum FifoMessage {
RESPONSE_CORE1_THREAD_STARTED = 0,
RESPONSE_CORE1_THREAD_TERMINATED = 0,
EVENT_I2S_DMA_TRANSFER_STARTED,
NOTIFY_I2S_DISABLED
};
static const uint64_t FIFO_TIMEOUT = 10 * 1000; // us
void i2s_callback_loop()
{
multicore_fifo_push_blocking(RESPONSE_CORE1_THREAD_STARTED);
#ifndef NDEBUG
printf("i2s_callback_loop started (on core %d)\n", get_core_num());
#endif // NDEBUG
while (true) {
uint32_t msg = multicore_fifo_pop_blocking();
if (msg == EVENT_I2S_DMA_TRANSFER_STARTED) {
i2s_callback_func();
} else if (msg == NOTIFY_I2S_DISABLED) {
break;
} else {
panic("Unexpected message from Core 0\n");
}
tight_loop_contents();
}
multicore_fifo_push_blocking(RESPONSE_CORE1_THREAD_TERMINATED);
#ifndef NDEBUG
printf("i2s_callback_loop terminated (on core %d)\n", get_core_num());
#endif // NDEBUG
while (true) { tight_loop_contents(); } // infinite loop
return;
}
#endif // CORE1_PROCESS_I2S_CALLBACK
//void audio_i2s_end(const audio_i2s_config_t *config) {
void audio_i2s_end() {
audio_buffer_t *ab = shared_state.playing_buffer;
queue_free_audio_buffer(audio_i2s_consumer, ab);
free(silence_buffer.buffer);
shared_state.playing_buffer = NULL;
uint8_t sm = shared_state.pio_sm;
pio_sm_drain_tx_fifo(audio_pio, sm);
pio_sm_unclaim(audio_pio, sm);
pio_remove_program(audio_pio, &audio_i2s_program, loaded_offset);
pio_clear_instruction_memory(audio_pio);
uint8_t dma_channel = shared_state.dma_channel;
dma_channel_unclaim(dma_channel);
irq_remove_handler(DMA_IRQ_x, audio_i2s_dma_irq_handler);
dma_channel_set_irqx_enabled(dma_channel, 0);
}
const audio_format_t *audio_i2s_setup(const audio_format_t *i2s_input_audio_format, const audio_format_t *i2s_output_audio_format,
const audio_i2s_config_t *config) {
_i2s_input_audio_format = i2s_input_audio_format;
_i2s_output_audio_format = i2s_output_audio_format;
uint func = GPIO_FUNC_PIOx;
gpio_set_function(config->data_pin, func);
gpio_set_function(config->clock_pin_base, func);
gpio_set_function(config->clock_pin_base + 1, func);
uint8_t sm = shared_state.pio_sm = config->pio_sm;
pio_sm_claim(audio_pio, sm);
loaded_offset = pio_add_program(audio_pio, &audio_i2s_program);
assert(_i2s_output_audio_format->channel_count == AUDIO_CHANNEL_STEREO);
assert(_i2s_output_audio_format->pcm_format == AUDIO_PCM_FORMAT_S16 || _i2s_output_audio_format->pcm_format == AUDIO_PCM_FORMAT_S32);
uint res_bits = (_i2s_output_audio_format->pcm_format == AUDIO_PCM_FORMAT_S32) ? 32 : 16;
audio_i2s_program_init(audio_pio, sm, loaded_offset, config->data_pin, config->clock_pin_base, res_bits);
silence_buffer.buffer = pico_buffer_alloc(PICO_AUDIO_I2S_BUFFER_SAMPLE_LENGTH * 4);
silence_buffer.sample_count = PICO_AUDIO_I2S_BUFFER_SAMPLE_LENGTH;
silence_buffer.format = &pio_i2s_consumer_buffer_format;
__mem_fence_release();
uint8_t dma_channel = config->dma_channel;
dma_channel_claim(dma_channel);
shared_state.dma_channel = dma_channel;
dma_channel_config dma_config = dma_channel_get_default_config(dma_channel);
channel_config_set_dreq(&dma_config,
DREQ_PIOx_TX0 + sm
);
enum dma_channel_transfer_size i2s_dma_configure_size;
if (_i2s_output_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
switch (_i2s_output_audio_format->pcm_format) {
case AUDIO_PCM_FORMAT_S8:
case AUDIO_PCM_FORMAT_U8:
i2s_dma_configure_size = DMA_SIZE_8;
assert(false);
break;
case AUDIO_PCM_FORMAT_S16:
case AUDIO_PCM_FORMAT_U16:
i2s_dma_configure_size = DMA_SIZE_16;
assert(false);
break;
case AUDIO_PCM_FORMAT_S32:
case AUDIO_PCM_FORMAT_U32:
i2s_dma_configure_size = DMA_SIZE_32;
assert(false);
break;
default:
assert(false);
break;
}
} else {
switch (_i2s_output_audio_format->pcm_format) {
case AUDIO_PCM_FORMAT_S8:
case AUDIO_PCM_FORMAT_U8:
i2s_dma_configure_size = DMA_SIZE_16;
break;
case AUDIO_PCM_FORMAT_S16:
case AUDIO_PCM_FORMAT_U16:
i2s_dma_configure_size = DMA_SIZE_32;
break;
case AUDIO_PCM_FORMAT_S32:
case AUDIO_PCM_FORMAT_U32:
i2s_dma_configure_size = DMA_SIZE_32; // Need after-treatment because of no 64bit transfer
break;
default:
assert(false);
break;
}
}
channel_config_set_transfer_data_size(&dma_config, i2s_dma_configure_size);
dma_channel_configure(dma_channel,
&dma_config,
&audio_pio->txf[sm], // dest
NULL, // src
0, // count
false // trigger
);
irq_add_shared_handler(DMA_IRQ_x, audio_i2s_dma_irq_handler, PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY);
dma_channel_set_irqx_enabled(dma_channel, 1);
return _i2s_output_audio_format;
}
static void update_pio_frequency(uint32_t sample_freq, audio_pcm_format_t pcm_format, audio_channel_t channel_count) {
printf("setting PIO freq for target sampling freq = %d Hz\n", (int) sample_freq);
uint32_t system_clock_frequency = clock_get_hz(clk_sys);
assert(system_clock_frequency < 0x40000000);
//uint32_t divider = system_clock_frequency * 4 / sample_freq; // avoid arithmetic overflow
uint32_t divider;
uint32_t bits;
switch (pcm_format) {
case AUDIO_PCM_FORMAT_S8:
case AUDIO_PCM_FORMAT_U8:
divider = system_clock_frequency * 4 * channel_count / sample_freq;
bits = 8;
break;
case AUDIO_PCM_FORMAT_S16:
case AUDIO_PCM_FORMAT_U16:
divider = system_clock_frequency * 2 * channel_count / sample_freq;
bits = 16;
break;
case AUDIO_PCM_FORMAT_S32:
case AUDIO_PCM_FORMAT_U32:
divider = system_clock_frequency * 1 * channel_count / sample_freq;
bits = 32;
break;
default:
divider = system_clock_frequency * 2 * channel_count / sample_freq;
bits = 16;
assert(false);
break;
}
assert(divider < 0x1000000);
#if 0 // PIO_CLK_DIV_FRAC
float pio_freq = (float) system_clock_frequency * 256 / divider; // frac
printf("System clock at %u Hz, I2S clock divider %d/256: PIO freq %7.4f Hz\n", (uint) system_clock_frequency, (uint) divider, pio_freq);
pio_sm_set_clkdiv_int_frac(audio_pio, shared_state.pio_sm, divider >> 8u, divider & 0xffu); // This scheme includes clock Jitter
#else
divider >>= 8u;
float pio_freq = (float) system_clock_frequency / divider; // no frac
float samp_freq = pio_freq / ((float) bits * 2.0 * 2.0);
printf("System clock at %u Hz, I2S clock divider %d: PIO freq %7.4f Hz: sampling freq %7.4f Hz\n", (uint) system_clock_frequency, (uint) divider, pio_freq, samp_freq);
pio_sm_set_clkdiv(audio_pio, shared_state.pio_sm, divider); // No Jitter. but clock freq accuracy depends on PIO source clock freq
#endif
shared_state.freq = sample_freq;
}
static audio_buffer_t *wrap_consumer_take(audio_connection_t *connection, bool block) {
// support dynamic frequency shifting
if (connection->producer_pool->format->sample_freq != shared_state.freq) {
update_pio_frequency(connection->producer_pool->format->sample_freq, connection->producer_pool->format->pcm_format, connection->producer_pool->format->channel_count);
}
if (_i2s_input_audio_format->pcm_format == _i2s_output_audio_format->pcm_format) {
if (_i2s_input_audio_format->channel_count == AUDIO_CHANNEL_MONO && _i2s_input_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
return mono_to_mono_consumer_take(connection, block);
} else if (_i2s_input_audio_format->channel_count == AUDIO_CHANNEL_MONO && _i2s_input_audio_format->channel_count == AUDIO_CHANNEL_STEREO) {
return mono_to_stereo_consumer_take(connection, block);
} else if (_i2s_input_audio_format->channel_count == AUDIO_CHANNEL_STEREO && _i2s_input_audio_format->channel_count == AUDIO_CHANNEL_STEREO) {
switch (_i2s_input_audio_format->pcm_format) {
case AUDIO_PCM_FORMAT_S16:
return stereo_s16_to_stereo_s16_consumer_take(connection, block);
break;
case AUDIO_PCM_FORMAT_S32:
return stereo_s32_to_stereo_s32_consumer_take(connection, block);
break;
default:
assert(false);
}
} else {
assert(false); // unsupported
}
} else {
assert(false); // unsupported
}
}
static void wrap_producer_give(audio_connection_t *connection, audio_buffer_t *buffer) {
// support dynamic frequency shifting
if (connection->producer_pool->format->sample_freq != shared_state.freq) {
update_pio_frequency(connection->producer_pool->format->sample_freq, connection->producer_pool->format->pcm_format, connection->producer_pool->format->channel_count);
}
if (_i2s_input_audio_format->pcm_format == _i2s_output_audio_format->pcm_format) {
if (_i2s_input_audio_format->channel_count == AUDIO_CHANNEL_MONO && _i2s_input_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
assert(false);
//return mono_to_mono_producer_give(connection, block);
} else if (_i2s_input_audio_format->channel_count == AUDIO_CHANNEL_MONO && _i2s_input_audio_format->channel_count == AUDIO_CHANNEL_STEREO) {
assert(false);
//return mono_to_stereo_producer_give(connection, buffer);
} else if (_i2s_input_audio_format->channel_count == AUDIO_CHANNEL_STEREO && _i2s_input_audio_format->channel_count == AUDIO_CHANNEL_STEREO) {
switch (_i2s_input_audio_format->pcm_format) {
case AUDIO_PCM_FORMAT_S16:
return stereo_s16_to_stereo_s16_producer_give(connection, buffer);
break;
case AUDIO_PCM_FORMAT_S32:
return stereo_s32_to_stereo_s32_producer_give(connection, buffer);
break;
default:
assert(false);
}
} else {
assert(false); // unsupported
}
} else {
assert(false); // unsupported
}
}
static struct buffer_copying_on_consumer_take_connection m2s_audio_i2s_ct_connection = {
.core = {
.consumer_pool_take = wrap_consumer_take,
.consumer_pool_give = consumer_pool_give_buffer_default,
.producer_pool_take = producer_pool_take_buffer_default,
.producer_pool_give = producer_pool_give_buffer_default,
}
};
static struct producer_pool_blocking_give_connection m2s_audio_i2s_pg_connection = {
.core = {
.consumer_pool_take = consumer_pool_take_buffer_default,
.consumer_pool_give = consumer_pool_give_buffer_default,
.producer_pool_take = producer_pool_take_buffer_default,
.producer_pool_give = wrap_producer_give,
}
};
bool audio_i2s_connect_thru(audio_buffer_pool_t *producer, audio_connection_t *connection) {
return audio_i2s_connect_extra(producer, false, 2, 256, connection);
}
bool audio_i2s_connect(audio_buffer_pool_t *producer) {
return audio_i2s_connect_thru(producer, NULL);
}
bool audio_i2s_connect_extra(audio_buffer_pool_t *producer, bool buffer_on_give, uint buffer_count,
uint samples_per_buffer, audio_connection_t *connection) {
printf("Connecting PIO I2S audio\n");
// todo we need to pick a connection based on the frequency - e.g. 22050 can be more simply upsampled to 44100
assert(producer->format->pcm_format == AUDIO_PCM_FORMAT_S16 || producer->format->pcm_format == AUDIO_PCM_FORMAT_S32);
pio_i2s_consumer_format.pcm_format = _i2s_output_audio_format->pcm_format;
// todo we could do mono
// todo we can't match exact, so we should return what we can do
pio_i2s_consumer_format.sample_freq = producer->format->sample_freq;
pio_i2s_consumer_format.channel_count = _i2s_output_audio_format->channel_count;
switch (_i2s_output_audio_format->pcm_format) {
case AUDIO_PCM_FORMAT_S8:
case AUDIO_PCM_FORMAT_U8:
pio_i2s_consumer_buffer_format.sample_stride = 1 * pio_i2s_consumer_format.channel_count;
break;
case AUDIO_PCM_FORMAT_S16:
case AUDIO_PCM_FORMAT_U16:
pio_i2s_consumer_buffer_format.sample_stride = 2 * pio_i2s_consumer_format.channel_count;
break;
case AUDIO_PCM_FORMAT_S32:
case AUDIO_PCM_FORMAT_U32:
pio_i2s_consumer_buffer_format.sample_stride = 4 * pio_i2s_consumer_format.channel_count;
break;
default:
assert(false);
break;
}
audio_i2s_consumer = audio_new_consumer_pool(&pio_i2s_consumer_buffer_format, buffer_count, samples_per_buffer);
update_pio_frequency(producer->format->sample_freq, producer->format->pcm_format, producer->format->channel_count);
// todo cleanup threading
__mem_fence_release();
if (!connection) {
if (producer->format->channel_count == AUDIO_CHANNEL_STEREO) {
if (_i2s_input_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
panic("need to merge channels down\n");
} else if (_i2s_output_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
panic("trying to play stereo thru mono not yet supported");
} else {
printf("Copying stereo to stereo at %d Hz\n", (int) producer->format->sample_freq);
}
// todo we should support pass thru option anyway
//printf("TODO... not completing stereo audio connection properly!\n");
} else {
if (_i2s_output_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
printf("Copying mono to mono at %d Hz\n", (int) producer->format->sample_freq);
} else {
printf("Converting mono to stereo at %d Hz\n", (int) producer->format->sample_freq);
}
}
connection = buffer_on_give ? &m2s_audio_i2s_pg_connection.core : &m2s_audio_i2s_ct_connection.core;
}
audio_complete_connection(connection, producer, audio_i2s_consumer);
return true;
}
static struct buffer_copying_on_consumer_take_connection m2s_audio_i2s_connection_s8_mono = {
.core = {
.consumer_pool_take = mono_s8_to_mono_consumer_take,
.consumer_pool_give = consumer_pool_give_buffer_default,
.producer_pool_take = producer_pool_take_buffer_default,
.producer_pool_give = producer_pool_give_buffer_default,
}
};
static struct buffer_copying_on_consumer_take_connection m2s_audio_i2s_connection_s8_stereo = {
.core = {
.consumer_pool_take = mono_s8_to_stereo_consumer_take,
.consumer_pool_give = consumer_pool_give_buffer_default,
.producer_pool_take = producer_pool_take_buffer_default,
.producer_pool_give = producer_pool_give_buffer_default,
}
};
bool audio_i2s_connect_s8(audio_buffer_pool_t *producer) {
printf("Connecting PIO I2S audio (U8)\n");
// todo we need to pick a connection based on the frequency - e.g. 22050 can be more simply upsampled to 44100
assert(producer->format->pcm_format == AUDIO_PCM_FORMAT_S8);
pio_i2s_consumer_format.pcm_format = AUDIO_PCM_FORMAT_S16;
// todo we could do mono
// todo we can't match exact, so we should return what we can do
pio_i2s_consumer_format.sample_freq = producer->format->sample_freq;
pio_i2s_consumer_format.channel_count = _i2s_output_audio_format->channel_count;
switch (_i2s_output_audio_format->pcm_format) {
case AUDIO_PCM_FORMAT_S8:
case AUDIO_PCM_FORMAT_U8:
pio_i2s_consumer_buffer_format.sample_stride = 1 * pio_i2s_consumer_format.channel_count;
break;
case AUDIO_PCM_FORMAT_S16:
case AUDIO_PCM_FORMAT_U16:
pio_i2s_consumer_buffer_format.sample_stride = 2 * pio_i2s_consumer_format.channel_count;
break;
case AUDIO_PCM_FORMAT_S32:
case AUDIO_PCM_FORMAT_U32:
pio_i2s_consumer_buffer_format.sample_stride = 4 * pio_i2s_consumer_format.channel_count;
break;
default:
assert(false);
break;
}
// we do this on take so should do it quickly...
uint samples_per_buffer = 256;
// todo with take we really only need 1 buffer
audio_i2s_consumer = audio_new_consumer_pool(&pio_i2s_consumer_buffer_format, 2, samples_per_buffer);
// todo we need a method to calculate this in clocks
uint32_t system_clock_frequency = 48000000;
//uint32_t divider = system_clock_frequency * 4 / producer->format->sample_freq; // avoid arithmetic overflow
//uint32_t divider = system_clock_frequency * 256 / producer->format->sample_freq * 16 * 4;
uint32_t divider;
switch (producer->format->pcm_format) {
case AUDIO_PCM_FORMAT_S8:
case AUDIO_PCM_FORMAT_U8:
divider = system_clock_frequency * 4 * producer->format->channel_count * 2 / producer->format->sample_freq;
break;
case AUDIO_PCM_FORMAT_S16:
case AUDIO_PCM_FORMAT_U16:
divider = system_clock_frequency * 2 * producer->format->channel_count * 2 / producer->format->sample_freq;
break;
case AUDIO_PCM_FORMAT_S32:
case AUDIO_PCM_FORMAT_U32:
divider = system_clock_frequency * 1 * producer->format->channel_count * 2 / producer->format->sample_freq;
break;
default:
divider = system_clock_frequency * 2 * producer->format->channel_count * 2 / producer->format->sample_freq;
assert(false);
break;
}
pio_sm_set_clkdiv_int_frac(audio_pio, shared_state.pio_sm, divider >> 8u, divider & 0xffu);
// todo cleanup threading
__mem_fence_release();
audio_connection_t *connection;
if (producer->format->channel_count == AUDIO_CHANNEL_STEREO) {
if (_i2s_output_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
panic("trying to play stereo thru mono not yet supported");
}
// todo we should support pass thru option anyway
printf("TODO... not completing stereo audio connection properly!\n");
connection = &m2s_audio_i2s_connection_s8_stereo.core;
} else {
if (_i2s_output_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
printf("Copying mono to mono at %d Hz\n", (int) producer->format->sample_freq);
connection = &m2s_audio_i2s_connection_s8_mono.core;
} else {
printf("Converting mono to stereo at %d Hz\n", (int) producer->format->sample_freq);
connection = &m2s_audio_i2s_connection_s8_stereo.core;
}
}
audio_complete_connection(connection, producer, audio_i2s_consumer);
return true;
}
static inline void audio_start_dma_transfer() {
assert(!shared_state.playing_buffer);
#ifdef WATCH_DMA_TRANSFER_INTERVAL
static uint32_t latest = 0;
static uint32_t max_interval = 0;
uint32_t now = _micros();
uint32_t interval = now - latest;
if (latest != 0 && max_interval < interval) {
printf("dma_transfer interval %d\n", interval);
max_interval = interval;
}
latest = now;
#endif // WATCH_DMA_TRANSFER_INTERVAL
#ifdef WATCH_PIO_SM_TX_FIFO_LEVEL
uint tx_fifo_level = pio_sm_get_tx_fifo_level(audio_pio, shared_state.pio_sm);
if (tx_fifo_level < 4) {
printf("PIO TX FIFO too low: %d at %d ms\n", (int) tx_fifo_level, (int) _millis());
}
#endif // WATCH_PIO_SM_TX_FIFO_LEVEL
audio_buffer_t *ab = take_audio_buffer(audio_i2s_consumer, false);
shared_state.playing_buffer = ab;
if (!ab) {
DEBUG_PINS_XOR(audio_timing, 1);
DEBUG_PINS_XOR(audio_timing, 2);
DEBUG_PINS_XOR(audio_timing, 1);
//DEBUG_PINS_XOR(audio_timing, 2);
// just play some silence
ab = &silence_buffer;
}
assert(ab->sample_count);
// todo better naming of format->format->format!!
assert(ab->format->format->pcm_format == AUDIO_PCM_FORMAT_S16 || ab->format->format->pcm_format == AUDIO_PCM_FORMAT_S32);
if (_i2s_output_audio_format->channel_count == AUDIO_CHANNEL_MONO) {
assert(ab->format->format->channel_count == AUDIO_CHANNEL_MONO);
//assert(ab->format->sample_stride == 2);
} else {
assert(ab->format->format->channel_count == AUDIO_CHANNEL_STEREO);
//assert(ab->format->sample_stride == 4);
}
if (ab->format->format->pcm_format == AUDIO_PCM_FORMAT_S32 && ab->format->format->channel_count == AUDIO_CHANNEL_STEREO) {
dma_channel_transfer_from_buffer_now(shared_state.dma_channel, ab->buffer->bytes, ab->sample_count*2); // DMA_SIZE_32 * 2 times;
} else {
dma_channel_transfer_from_buffer_now(shared_state.dma_channel, ab->buffer->bytes, ab->sample_count);
}
}
// irq handler for DMA
void __isr __time_critical_func(audio_i2s_dma_irq_handler)() {
#if PICO_AUDIO_I2S_NOOP
assert(false);
#else
uint dma_channel = shared_state.dma_channel;
if (dma_intsx & (1u << dma_channel)) {
dma_intsx = 1u << dma_channel;
DEBUG_PINS_SET(audio_timing, 4);
// free the buffer we just finished
if (shared_state.playing_buffer) {
give_audio_buffer(audio_i2s_consumer, shared_state.playing_buffer);
#ifndef NDEBUG
shared_state.playing_buffer = NULL;
#endif
}
audio_start_dma_transfer();
DEBUG_PINS_CLR(audio_timing, 4);
#ifdef CORE1_PROCESS_I2S_CALLBACK
bool flg = multicore_fifo_push_timeout_us(EVENT_I2S_DMA_TRANSFER_STARTED, FIFO_TIMEOUT);
if (!flg) { printf("Core0 -> Core1 FIFO Full\n"); }
#else
i2s_callback_func();
#endif // CORE1_PROCESS_I2S_CALLBACK
}
#endif
}
static bool audio_enabled;
void audio_i2s_set_enabled(bool enabled) {
if (enabled != audio_enabled) {
#ifndef NDEBUG
if (enabled) {
printf("Enabling PIO I2S audio (on core %d)\n", get_core_num());
} else {
printf("Disabling PIO I2S audio (on core %d)\n", get_core_num());
}
#endif
if (enabled) { // Clear pending before enabled
uint dma_channel = shared_state.dma_channel;
dma_intsx = 1u << dma_channel;
}
irq_set_enabled(DMA_IRQ_x, enabled);
if (enabled) {
audio_start_dma_transfer();
}
#ifdef CORE1_PROCESS_I2S_CALLBACK
bool flg;
uint32_t msg;
if (enabled) {
multicore_reset_core1();
multicore_launch_core1(i2s_callback_loop);
flg = multicore_fifo_pop_timeout_us(FIFO_TIMEOUT, &msg);
if (!flg || msg != RESPONSE_CORE1_THREAD_STARTED) {
panic("Core1 is not respond\n");
}
} else {
flg = multicore_fifo_push_timeout_us(NOTIFY_I2S_DISABLED, FIFO_TIMEOUT);
if (!flg) { printf("Core0 -> Core1 FIFO Full\n"); }
flg = multicore_fifo_pop_timeout_us(FIFO_TIMEOUT, &msg);
if (!flg || msg != RESPONSE_CORE1_THREAD_TERMINATED) {
panic("Core1 is not respond\n");
}
}
#endif // CORE1_PROCESS_I2S_CALLBACK
pio_sm_set_enabled(audio_pio, shared_state.pio_sm, enabled);
audio_enabled = enabled;
}
}