-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData Manipulation Classes
411 lines (350 loc) · 15.1 KB
/
Data Manipulation Classes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Import all useful data modules
import pandas as pd
import numpy as np
import seaborn as sns
import os
import re
import matplotlib.pyplot as plt
import featexp
import missingno
import statsmodels.api as sm
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import OneHotEncoder, StandardScaler, LabelEncoder, Imputer
from sklearn.model_selection import cross_val_score, GridSearchCV
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.base import BaseEstimator, TransformerMixin
# Import key regression models to test
from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR, LinearSVR, NuSVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
# Define classes and function required later in the pipeline flow
class ModelTransformer(TransformerMixin):
'''Wrapper to treat model as transformer - useful if using algo to generate feature for a future model
e.g. Using KNN to generate clusters for input into regression model'''
def __init__(self, model):
self.model = model
def fit(self, *args, **kwargs):
self.model.fit(*args, **kwargs)
return self
def transform(self, X, **transform_params):
return pd.DataFrame(self.model.predict(X))
# Class to select the columns of a dataset that belong to a specified data-type
class TypeSelector(TransformerMixin):
def __init__(self, dtype):
self.dtype = dtype
def fit(self, X, y=None):
return self
def transform(self, X):
assert isinstance(X, pd.DataFrame)
return X.select_dtypes(include=[self.dtype])
# Sklearn warppper for the pandas get_dummies function
class GetDummiesEncoder(BaseEstimator, TransformerMixin):
def __init__(self, columns=None):
self.columns = columns
def fit(self, X, y=None, columns=None):
return self
def transform(self, X):
assert isinstance(X, pd.DataFrame)
X = pd.get_dummies(X, columns=self.columns, drop_first=True)
return pd.DataFrame(X, columns=X.columns)
def get_feature_names(self):
return X.columns.tolist()
# Class to create a pandas version of the sklearn Imputer function
class ImputerDf(TransformerMixin):
def __init__(self, strategy, specific_cols=None, missing_values="NaN"):
self.strategy = strategy
self.specific_cols = specific_cols
self.missing_values = missing_values
def fit(self, X, y=None):
self.old_cols = X.columns
if self.specific_cols is None:
self.imputer = Imputer(strategy=self.strategy, missing_values=self.missing_values).fit(X)
else:
self.imputer = Imputer(strategy=self.strategy, missing_values=self.missing_values).fit(np.array(X[self.specific_cols]).reshape(-1,1))
return self
def transform(self, X):
if self.specific_cols is None:
X = self.imputer.transform(X)
else:
X[self.specific_cols] = self.imputer.transform(np.array(X[self.specific_cols]).reshape(-1,1))
X = pd.DataFrame(X, columns=self.old_cols)
return X
def get_feature_names(self):
return X.columns.tolist()
# Class to create a pandas version of the sklearn StandardScaler function
class StandardScalerDf(TransformerMixin):
def fit(self, X, y=None):
return self
def transform(self, X):
old_cols = X.columns
#print(X)
X = StandardScaler().fit_transform(X)
X = pd.DataFrame(X, columns=old_cols)
return X
# Class to convert the data type of a specific columns from and to specified data types
class DtypeConverter(BaseEstimator, TransformerMixin):
def __init__(self, from_dtype, to_dtype, col_name=None):
self.from_dtype = from_dtype
self.to_dtype = to_dtype
self.col_name = col_name
def fit(self, X, y=None):
return self
def transform(self, X):
#assert isinstance(X, pd.DataFrame)
if not self.col_name is None:
X[self.col_name] = X[self.col_name].astype(self.to_dtype)
else:
for col in list(X.select_dtypes(include=[self.from_dtype]).columns):
X[col] = X[col].astype(self.to_dtype)
return X
# Class to overwrite the label from and to specified values
class OverwriteLabel(BaseEstimator, TransformerMixin):
def __init__(self, col_name, from_label, to_label):
self.col_name = col_name
self.from_label = from_label
self.to_label = to_label
def fit(self, X, y=None):
return self
def transform(self, X):
X.loc[X[self.col_name] == self.from_label, self.col_name] = self.to_label
return X
# Class to determine the mean encoding value based on cat column and target column
class MeanEncoder(BaseEstimator, TransformerMixin):
def __init__(self, category, target, drop_target):
self.category = category
self.target = target
self.drop_target = drop_target
def fit(self, X, y=None):
self.means_dict = {}
if isinstance(self.category, list):
for i in range(len(self.category)):
self.means_dict[self.category[i]] = pd.DataFrame(X.groupby(self.category[i])[self.target].mean())
self.means_dict[self.category[i]].columns = ['Mean_' + str(self.category[i])]
else:
self.means = pd.DataFrame(X.groupby(self.category)[self.target].mean())
self.means.columns = ['Mean_' + str(self.category)]
return self
def transform(self, X, y=None):
#means = pd.DataFrame(X.groupby(self.category)[self.target].mean())
#means.columns = ['Mean_' + str(self.category)]
if isinstance(self.category, list):
for i in range(len(self.category)):
X = pd.merge(X, self.means_dict[self.category[i]], how='left', right_on=self.means_dict[self.category[i]].index, left_on=self.category[i])
if self.drop_target:
X = X.drop([self.category[i]], axis=1)
else:
X = pd.merge(X, self.means, how='left', right_on=self.means.index, left_on=self.category)
if self.drop_target:
X = X.drop([self.category], axis=1)
return X
# Class to extract specified columns for later processing - in_scope bool permits toggle btn chosen and others cols
class ColumnExtractor(BaseEstimator, TransformerMixin):
def __init__(self, cols, in_scope=True):
self.cols = cols
self.in_scope = in_scope
#self.dtype = dtype
def fit(self, X, y=None):
return self
def transform(self, X):
if self.in_scope:
return X[self.cols]
else:
return X[[col_name for col_name in X.columns if col_name not in self.cols]]
# Class to impute a value based on the groupby average of a specified column
class ImputeGroupBy(BaseEstimator, TransformerMixin):
def __init__(self, grp_col, value_col, strategy='mean'):
self.grp_col = grp_col
self.value_col = value_col
self.strategy = strategy
def fit(self, X, y=None):
if self.strategy == 'mean':
self.averages = pd.DataFrame(X.groupby(self.grp_col)[self.value_col].mean())
elif self.strategy =='median':
self.averages = pd.DataFrame(X.groupby(self.grp_col)[self.value_col].median())
elif self.strategy == 'mode':
self.averages = pd.DataFrame(X.groupby(self.grp_col)[self.value_col].mode())
self.averages.columns = ['Impute_value']
return self
def transform(self, X):
for label in list(X[self.grp_col].unique()):
missing_condition = (X[self.grp_col] == label) & (X[self.value_col].isnull() == True)
if len(missing_condition) > 0:
X.loc[missing_condition, self.value_col] = np.float(self.averages[self.averages.index == label]['Impute_value'])
return X
# Class to convert a year to an age
class YearToAge(BaseEstimator, TransformerMixin):
def __init__(self, current_year, year_col):
self.current_year = current_year
self.year_col = year_col
def fit(self, X, y=None):
return self
def transform(self, X):
X['Age'] = X[self.year_col].apply(lambda x: np.int(self.current_year) - x)
X.drop(self.year_col, axis=1, inplace=True)
return X
# Class to impute a categorical label to the most common label in that column
class CatImputer(BaseEstimator, TransformerMixin):
def __init__(self, col_name):
self.col_name = col_name
def fit(self, X, y=None):
return self
def transform(self, X):
if not self.col_name is None:
X.loc[X[self.col_name].isnull(), self.col_name] = X[self.col_name].value_counts().index[0]
else:
X = X.apply(lambda x: x.fillna(x.value_counts().index[0]))
return X
# Class to label encode in pandas format
class LabelEncoderDf(BaseEstimator, TransformerMixin):
def __init__(self, col_name):
self.col_name = col_name
def fit(self, X, y=None):
return self
def transform(self, X):
X[self.col_name] = LabelEncoder().fit_transform(X[self.col_name])
return X
class LabelEncoderSpecific(BaseEstimator, TransformerMixin):
def __init__(self, col_to_label, labels):
self.labels = labels
self.col_to_label = col_to_label
def fit(self, X, y=None):
if isinstance(self.labels, dict):
self.labels = pd.DataFrame(self.labels)
else:
self.labels = self.labels
return self
def transform(self, X):
print(self.labels)
X = pd.merge(X, self.labels, how='left', on=self.col_to_label)
return X
# Class to create the mean ratio of a variable versus itself
class MeanRatio(BaseEstimator, TransformerMixin):
def __init__(self, mean_col, by=None):
self.mean_col = mean_col
self.by = by
def fit(self, X, y=None):
if self.by is None:
self.mean = X[self.mean_col].mean()
else:
self.mean = pd.DataFrame(X.groupby(by=self.by)[self.mean_col].mean())
self.mean.columns = [self.mean_col + '_Mean_by_' + self.by]
return self
def transform(self, X):
if self.by is None:
X[self.mean_col + '_MeanRatio'] = X[self.mean_col] / self.mean
else:
X = pd.merge(X, self.mean, how='left', left_on=self.by, right_on=self.mean.index)
print('Mean column:')
print(self.mean_col)
print(self.mean)
X[self.mean_col + '_MeanRatio_by_' + self.by] = X[self.mean_col] / X[self.mean_col + '_Mean_by_' + self.by]
X.drop([self.mean_col + '_Mean_by_' + self.by], axis=1, inplace=True)
return X
# Class to select a slice from a string
class SelectSlice(BaseEstimator, TransformerMixin):
def __init__(self, from_index, to_index, from_col_name, new_col_name):
self.from_index = from_index
self.to_index = to_index
self.new_col_name = new_col_name
self.from_col_name = from_col_name
def fit(self, X, y=None):
return self
def transform(self, X):
X[self.new_col_name] = X[self.from_col_name].apply(lambda x: x[self.from_index : self.to_index])
return X
# Class to drop a column
class ColumnDrop(BaseEstimator, TransformerMixin):
def __init__(self, col_name):
self.col_name = col_name
def fit(self, X, y=None):
return self
def transform(self, X):
X = X.drop(self.col_name, axis=1)
return X
# Class to derive target based summary stats for chosen categorical variable
class GetTargetStatsBy(BaseEstimator, TransformerMixin):
def __init__(self, by_var_name, target):
#self.map_df = map_df
#self.train_df = train_df
self.by_var_name = by_var_name
self.target = target
def fit(self, X, y=None):
self.grouped_df = X.groupby(self.by_var_name)
self.min_dict = {}
self.max_dict = {}
self.mean_dict = {}
self.twentyfive_dict = {}
self.seventyfive_dict = {}
for name, group in self.grouped_df:
self.min_dict[name] = min(np.array(group[self.target]))
self.max_dict[name] = max(np.array(group[self.target]))
self.mean_dict[name] = np.mean(np.array(group[self.target]))
self.twentyfive_dict[name] = np.percentile(np.array(group[self.target]), 25)
self.seventyfive_dict[name] = np.percentile(np.array(group[self.target]), 75)
return self
def transform(self, X):
self.min_list = []
self.max_list = []
self.mean_list = []
self.twentyfive_list = []
self.seventyfive_list = []
for index, row in X.iterrows():
name = row[self.by_var_name]
self.min_list.append(self.min_dict.get(name, 0))
self.max_list.append(self.max_dict.get(name, 0))
self.mean_list.append(self.mean_dict.get(name, 0))
self.twentyfive_list.append(self.twentyfive_dict.get(name, 0))
self.seventyfive_list.append(self.seventyfive_dict.get(name, 0))
X[self.by_var_name + '_Min' + target] = self.min_list
X[self.by_var_name + '_Max' + target] = self.max_list
X[self.by_var_name + '_Mean' + target] = self.mean_list
X[self.by_var_name + '_25Perc' + target] = self.twentyfive_list
X[self.by_var_name + '_75Perc' + target] = self.seventyfive_list
return X
# Class to have a Pandas version of the FeatureUnion method
from sklearn.externals.joblib import Parallel, delayed
from sklearn.pipeline import FeatureUnion, _fit_transform_one, _transform_one
from scipy import sparse
class PandasFeatureUnion(FeatureUnion):
def fit_transform(self, X, y=None, **fit_params):
self._validate_transformers()
result = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_transform_one)(
transformer=trans,
X=X,
y=y,
weight=weight,
**fit_params)
for name, trans, weight in self._iter())
if not result:
# All transformers are None
return np.zeros((X.shape[0], 0))
Xs, transformers = zip(*result)
self._update_transformer_list(transformers)
if any(sparse.issparse(f) for f in Xs):
Xs = sparse.hstack(Xs).tocsr()
else:
Xs = self.merge_dataframes_by_column(Xs)
return Xs
def merge_dataframes_by_column(self, Xs):
return pd.concat(Xs, axis="columns", copy=False)
def transform(self, X):
Xs = Parallel(n_jobs=self.n_jobs)(
delayed(_transform_one)(
transformer=trans,
X=X,
y=None,
weight=weight)
for name, trans, weight in self._iter())
if not Xs:
# All transformers are None
return np.zeros((X.shape[0], 0))
if any(sparse.issparse(f) for f in Xs):
Xs = sparse.hstack(Xs).tocsr()
else:
Xs = self.merge_dataframes_by_column(Xs)
return Xs