-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_random_batch.py
152 lines (123 loc) · 4.63 KB
/
test_random_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import math
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from PIL import Image
from torch.autograd import Variable
from torchvision.utils import save_image
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision import utils
from data.dataloader import GetData
from models.LBAMModel import LBAMModel
import pytorch_ssim
from PIL import Image
from torchvision.transforms import Compose, ToTensor, Resize, ToPILImage
parser = argparse.ArgumentParser()
parser.add_argument('--numOfWorkers', type=int, default=4,
help='workers for dataloader')
parser.add_argument('--pretrained', type=str, default='', help='pretrained models')
parser.add_argument('--batchSize', type=int, default=16)
parser.add_argument('--loadSize', type=int, default=350,
help='image loading size')
parser.add_argument('--cropSize', type=int, default=256,
help='image training size')
parser.add_argument('--dataRoot', type=str,
default='')
parser.add_argument('--maskRoot', type=str,
default='')
parser.add_argument('--savePath', type=str, default='./results')
args = parser.parse_args()
cuda = torch.cuda.is_available()
if cuda:
print('Cuda is available!')
cudnn.benchmark = True
batchSize = args.batchSize
loadSize = (args.loadSize, args.loadSize)
cropSize = (args.cropSize, args.cropSize)
dataRoot = args.dataRoot
maskRoot = args.maskRoot
savePath = args.savePath
if not os.path.exists(savePath):
os.makedirs(savePath)
imgData = GetData(dataRoot, maskRoot, loadSize, cropSize)
data_loader = DataLoader(imgData, batch_size=batchSize, shuffle=True, num_workers=1, drop_last=False)
num_epochs = 10
netG = LBAMModel(4, 3)
if args.pretrained != '':
netG.load_state_dict(torch.load(args.pretrained))
else:
print('No pretrained model provided!')
#
if cuda:
netG = netG.cuda()
for param in netG.parameters():
param.requires_grad = False
print('OK!')
sum_psnr = 0
sum_ssim = 0
count = 0
sum_time = 0.0
l1_loss = 0
import time
start = time.time()
for i in range(1, num_epochs + 1):
netG.eval()
if count >= 60:
break
for inputImgs, GT, masks in (data_loader):
if count >= 60:
break
if cuda:
inputImgs = inputImgs.cuda()
GT = GT.cuda()
masks = masks.cuda()
#do something other
fake_images = netG(inputImgs, masks)
g_image = fake_images.data.cpu()
GT = GT.data.cpu()
mask = masks.data.cpu()
damaged = GT * mask
generaredImage = GT * mask + g_image * (1 - mask)
groundTruth = GT
masksT = mask
generaredImage = generaredImage
groundTruth = groundTruth
count += 1
batch_mse = ((groundTruth - generaredImage) ** 2).mean()
psnr = 10 * math.log10(1 / batch_mse)
sum_psnr += psnr
print(count, ' psnr:', psnr)
ssim = pytorch_ssim.ssim(groundTruth * 255, generaredImage * 255)
sum_ssim += ssim
print(count, ' ssim:', ssim)
l1_loss += nn.L1Loss()(generaredImage, groundTruth)
outputs =torch.Tensor(4 * GT.size()[0], GT.size()[1], cropSize[0], cropSize[1])
for i in range(GT.size()[0]):
outputs[4 * i] = masksT[i]
outputs[4 * i + 1] = damaged[i]
#outputs[5 * i + 2] = GT[i] * masksT[i]
outputs[4 * i + 2] = generaredImage[i]
outputs[4 * i + 3] = GT[i]
#outputs[5 * i + 4] = 1 - masksT[i]
save_image(outputs, os.path.join(savePath, 'results-{}'.format(count) + '.png'))
# make subdirs to save mask GT results and input and damaged images
# damaged = GT * mask + (1 - mask)
# for j in range(GT.size()[0]):
# save_image(outputs[4 * j + 1], savePath + '/damaged/damaged{}-{}.png'.format(count, j))
# outputs[4 * j + 1] = damaged[j]
# for j in range(GT.size()[0]):
# outputs[4 * j] = 1- masksT[j]
# save_image(outputs[4 * j], savePath + '/masks/mask{}-{}.png'.format(count, j))
# save_image(outputs[4 * j + 1], savePath + '/input/input{}-{}.png'.format(count, j))
# save_image(outputs[4 * j + 2], savePath + '/ours/ours{}-{}.png'.format(count, j))
# save_image(outputs[4 * j + 3], savePath + '/GT/GT{}-{}.png'.format(count, j))
end = time.time()
sum_time += (end - start) / batchSize
print('avg l1 loss:', l1_loss / count)
print('average psnr:', sum_psnr / count)
print('average ssim:', sum_ssim / count)
print('average time cost:', sum_time / count)