-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
69 lines (56 loc) · 2.14 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import math
import argparse
import torch
import torch.backends.cudnn as cudnn
from PIL import Image
from torchvision.utils import save_image
from torchvision import datasets
from models.LBAMModel import LBAMModel
from PIL import Image
from torchvision.transforms import Compose, ToTensor, Resize, ToPILImage
from data.basicFunction import CheckImageFile
parser = argparse.ArgumentParser()
parser.add_argument('--input', type=str, default='', help='input damaged image')
parser.add_argument('--mask', type=str, default='', help='input mask')
parser.add_argument('--output', type=str, default='output', help='output file name')
parser.add_argument('--pretrained', type=str, default='', help='load pretrained model')
parser.add_argument('--loadSize', type=int, default=350,
help='image loading size')
parser.add_argument('--cropSize', type=int, default=256,
help='image training size')
args = parser.parse_args()
ImageTransform = Compose([
Resize(size=args.cropSize, interpolation=Image.NEAREST),
ToTensor(),
])
MaskTransform = Compose([
Resize(size=args.cropSize, interpolation=Image.NEAREST),
ToTensor(),
])
if not CheckImageFile(args.input):
print('Input file is not image file!')
elif not CheckImageFile(args.mask):
print('Input mask is not image file!')
elif args.pretrained == '':
print('Provide pretrained model!')
else:
image = ImageTransform(Image.open(args.input).convert('RGB'))
mask = MaskTransform(Image.open(args.mask).convert('RGB'))
mask = 1 - mask
sizes = image.size()
image = image * mask
inputImage = torch.cat((image, mask[0].view(1, sizes[1], sizes[2])), 0)
inputImage = inputImage.view(1, 4, sizes[1], sizes[2])
mask = mask.view(1, sizes[0], sizes[1], sizes[2])
netG = LBAMModel(4, 3)
netG.load_state_dict(torch.load(args.pretrained))
for param in netG.parameters():
param.requires_grad = False
netG.eval()
if torch.cuda.is_available():
netG = netG.cuda()
inputImage = inputImage.cuda()
mask = mask.cuda()
output = netG(inputImage, mask)
save_image(output, args.output + '.png')