-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_network.py
425 lines (314 loc) · 13.9 KB
/
train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import Dataset
import numpy as np
import time
import os
from os import path
import random
from utils import data_loading_funcs as load_func
import SimpleITK as sitk
from networks import generators as gens
from numpy.linalg import inv
from datetime import datetime
import argparse
################
print(torch.__version__)
desc = 'Training registration generator'
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('-i', '--init_mode',
type=str,
help="mode of training with different transformation matrics",
default='load')
parser.add_argument('-l', '--learning_rate',
type=float,
help='Learning rate',
default=0.001) #we used 0.001
parser.add_argument('-d', '--device_no',
type=int,
choices=[0, 1, 2, 3, 4, 5, 6, 7],
help='GPU device number [0-7]',
default=0)
parser.add_argument('-e', '--epochs',
type=int,
help='number of training epochs',
default=10) #we used 300 on our dataset
parser.add_argument('-n', '--network_type',
type=str,
help='choose different network architectures',
default='AttentionReg')
parser.add_argument('-info', '--infomation',
type=str,
help='infomation of this round of experiment',
default='None')
net = 'Generator'
batch_size = 1 #we used 8 or 16 in our experiments
# print('batch size = ',batch_size)
current_epoch = 0
args = parser.parse_args()
device_no = args.device_no
epochs = args.epochs
device = torch.device("cuda:{}".format(device_no))
def filename_list(dir):
images = []
dir = os.path.expanduser(dir)
# print('dir {}'.format(dir))
for filename in os.listdir(dir):
# print(filename)
file_path = path.join(dir, filename)
images.append(file_path)
# print(file_path)
# print(images)
return images
def normalize_volume(input_volume):
# print('input_volume shape {}'.format(input_volume.shape))
mean = np.mean(input_volume)
std = np.std(input_volume)
normalized_volume = (input_volume - mean) / std
# print('normalized shape {}'.format(normalized_volume.shape))
# time.sleep(30)
return normalized_volume
def scale_volume(input_volume, upper_bound=255, lower_bound=0):
max_value = np.max(input_volume)
min_value = np.min(input_volume)
k = (upper_bound - lower_bound) / (max_value - min_value)
scaled_volume = k * (input_volume - min_value) + lower_bound
# print('min of scaled {}'.format(np.min(scaled_volume)))
# print('max of scaled {}'.format(np.max(scaled_volume)))
return scaled_volume
class MR_TRUS_4D(Dataset):
def __init__(self, root_dir, initialization):
"""
"""
samples = filename_list(root_dir)
"""list with all samples"""
if root_dir[-3:] == 'val':
self.status= 'val'
else:
self.status= 'train'
self.samples = samples
self.initialization = initialization
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
"""
:param idx:
:return:
"""
case_folder = self.samples[idx]
case_id = case_folder[-1:]
index = int(case_id)
norm_path = path.normpath(case_folder)
res = norm_path.split(os.sep)
status = res[-2]
''' Load ground-truth registration '''
gt_trans_fn = path.join('sample', 'gt.txt')
gt_mat = np.loadtxt(gt_trans_fn)
gt_params = load_func.decompose_matrix_degree(gt_mat)
"""generated random purtabation"""
if self.initialization == 'load':
# To randomly generate the transformation matrices
base_mat = np.loadtxt('{}/initialization_{}.txt'.format(case_folder,case_id))
# base_mat, params_rand = generate_random_transform(gt_mat)
# Although the training set is generated afresh, we recommend using the
# same validation set from epoch to epoch for stability. However, we cannot upload that much
# files, so we will use random validation samples in this demo.
# if status == 'val':
# base_mat = np.loadtxt('mats_forVal/Case{:04}_mat{}.txt'.format(index,init_no))
elif self.initialization == 'random_uniform':
#generate samples with random SRE in a certain range (e.g. [0-20] or [0-8])
# if you are provided with ground truth segmentation, calculate
# the randomized base_TRE (Target Registration Error):
# base_TRE = evaluator.evaluate_transform(base_mat)
base_mat, params_rand = generate_random_transform(gt_mat)
base_TRE = evaluator.evaluate_transform(base_mat)
uniform_target_TRE = np.random.uniform(0, 20, 1)[0]
scale_ratio = uniform_target_TRE / base_TRE
params_rand = params_rand * scale_ratio
base_mat = load_func.construct_matrix_degree(params=params_rand,
initial_transform=gt_mat)
else:
print('!' * 10 + ' Initialization mode <{}> not supported!'.format(self.initialization))
return
"""loading MR and US images. In our experiments, we read images from mhd files and resample them with MR segmentation."""
sample4D = np.zeros((2, 32, 96, 96), dtype=np.ubyte)
sample4D[0, :, :, :] = np.load(path.join(case_folder, 'MR_{}.npy'.format(case_id)))
sample4D[1, :, :, :] = np.load(path.join(case_folder, 'US_{}.npy'.format(case_id)))
sample4D = scale_volume(sample4D, upper_bound=1, lower_bound=0)
mat_diff = gt_mat.dot(np.linalg.inv(base_mat))
target = load_func.decompose_matrix_degree(mat_diff)
return sample4D, target, index, base_mat
#
# ----- #
def _get_random_value(r, center, hasSign):
randNumber = random.random() * r + center
if hasSign:
sign = random.random() > 0.5
if sign == False:
randNumber *= -1
return randNumber
# ----- #
def get_array_from_itk_matrix(itk_mat):
mat = np.reshape(np.asarray(itk_mat), (3, 3))
return mat
# ----- #
def create_transform(aX, aY, aZ, tX, tY, tZ, mat_base=None):
if mat_base is None:
mat_base = np.identity(3)
t_all = np.asarray((tX, tY, tZ))
# Get the transform
rotX = sitk.VersorTransform((1, 0, 0), aX / 180.0 * np.pi)
matX = get_array_from_itk_matrix(rotX.GetMatrix())
#
rotY = sitk.VersorTransform((0, 1, 0), aY / 180.0 * np.pi)
matY = get_array_from_itk_matrix(rotY.GetMatrix())
#
rotZ = sitk.VersorTransform((0, 0, 1), aZ / 180.0 * np.pi)
matZ = get_array_from_itk_matrix(rotZ.GetMatrix())
# Apply all the rotations
mat_all = matX.dot(matY.dot(matZ.dot(mat_base[:3, :3])))
return mat_all, t_all
def generate_random_transform(base_trans_mat4x4=None):
if base_trans_mat4x4 is None:
base_trans_mat4x4 = np.identity(4)
# Get random rotation and translation
# The hard coded values are based on the statistical analysis of
# euler_angle = 13 * np.pi / 180
signed = True
euler_angle = 5.0
angleX = _get_random_value(euler_angle, 0, signed)
angleY = _get_random_value(euler_angle, 0, signed)
angleZ = _get_random_value(euler_angle, 0, signed)
translation_range = 6.0
tX = _get_random_value(translation_range, 0, signed)
tY = _get_random_value(translation_range, 0, signed)
tZ = _get_random_value(translation_range, 0, signed)
parameters = np.asarray([tX, tY, tZ, angleX, angleY, angleZ])
arrTrans = load_func.construct_matrix_degree(parameters,
initial_transform=base_trans_mat4x4)
return arrTrans, parameters
def train_model(model, criterion, optimizer, scheduler, fn_save, num_epochs=25):
since = time.time()
lowest_loss = 2000
lowest_TRE = 2000
tv_hist = {'train': [], 'val': []}
for epoch in range(num_epochs):
global current_epoch
current_epoch = epoch + 1
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
# print('Network is in {}...'.format(phase))
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_TRE = 0.0
# Iterate over data.
for inputs, labels, img_id, base_mat in dataloaders[phase]:
labels = labels.type(torch.FloatTensor)
inputs = inputs.type(torch.FloatTensor)
labels = labels.to(device)
inputs = inputs.to(device)
labels.require_grad = True
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
'''Weighted MSE loss function'''
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.data.mean() * inputs.size(0)
#keep track of TRE of every epoch if you have the ground truth segmentation
#running_TRE += batch_TRE * inputs.size(0)
epoch_loss = running_loss / dataset_sizes[phase]
# epoch_TRE = running_TRE / dataset_sizes[phase]
# tv_hist[phase].append([epoch_loss, epoch_TRE])
tv_hist[phase].append(epoch_loss)
if phase == 'val' and epoch_loss <= lowest_loss: #loss version
# if phase == 'val' and epoch_TRE <= lowest_TRE: #TRE version
lowest_loss = epoch_loss
# lowest_TRE = epoch_TRE
best_ep = epoch
torch.save(model.state_dict(), fn_save)
print('**** best model updated with Loss={:.4f} ****'.format(lowest_loss))
for param_group in optimizer.param_groups:
print('learning rate: ',param_group['lr'])
print('ep {}/{}: T-loss: {:.4f}, V-loss: {:.4f}'.format(
epoch + 1, num_epochs,
tv_hist['train'][-1],
tv_hist['val'][-1])
)
#If you have the ground truth and want to keep track of TRE:
# print('ep {}/{}: T-loss: {:.4f}, V-loss: {:.4f}, T-TRE: {:.4f}, V-TRE: {:.4f}'.format(
# epoch + 1, num_epochs,
# tv_hist['train'][-1][0],
# tv_hist['val'][-1][0],
# tv_hist['train'][-1][1],
# tv_hist['val'][-1][1])
# )
time_elapsed = time.time() - since
print('*' * 10 + 'Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('*' * 10 + 'Lowest val loss: {:4f} at epoch {}'.format(lowest_loss, best_ep))
print()
return tv_hist
if __name__ == '__main__':
data_dir = 'sample'
results_dir = 'results'
init_mode = args.init_mode
network_type = args.network_type
print('Transform initialization mode: {}'.format(init_mode))
image_datasets = {x: MR_TRUS_4D(os.path.join(data_dir, x), init_mode)
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],
batch_size=batch_size,
shuffle=True,
num_workers=0)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
print('Number of training samples: {}'.format(dataset_sizes['train']))
print('Number of validation samples: {}'.format(dataset_sizes['val']))
if network_type == 'AttentionReg':
model_ft = gens.AttentionReg()
else:
print('network type of <{}> is not supported, use FeatureReg instead'.format(network_type))
model_ft = gens.FeatureReg()
model_ft = nn.DataParallel(model_ft)
model_ft.cuda()
model_ft = model_ft.to(device)
criterion = nn.MSELoss()
lr = args.learning_rate
print('Learning rate = {}'.format(lr))
optimizer = optim.Adam(model_ft.parameters(), lr=lr)
# this is the learning rate that worked best for us. The network is pretty sensitive to learning rate changes.
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[120, 170, 250], gamma=0.3)
now = datetime.now()
now_str = now.strftime('%m%d-%H%M%S')
print(now_str)
# Ready to start
fn_best_model = path.join('results/', 'Gen_{}_{}_{}_model.pth'.format(network_type, now_str, init_mode))
print('Start training...')
print('This model is <{}_{}_{}.pth>'.format(network_type, now_str, init_mode))
txt_path = path.join('results/', 'training_progress_{}_{}_{}.txt'.format(network_type, now_str, init_mode))
#count the parameters
model_parameters = filter(lambda p: p.requires_grad, model_ft.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('params {}'.format(params))
hist_ft = train_model(model_ft,
criterion,
optimizer,
exp_lr_scheduler,
fn_best_model,
num_epochs=epochs)
fn_hist = os.path.join('results/', 'hist_{}_{}_{}.npy'.format(net, now_str, init_mode))
np.save(fn_hist, hist_ft)
now = datetime.now()
now_stamp = now.strftime('%Y-%m-%d %H:%M:%S')
print('#' * 15 + ' Training {} completed at {} started at {}'.format(init_mode, now_stamp,now_str) + '#' * 15)