Design a system that manages the reservation state of n
seats that are numbered from 1
to n
.
Implement the SeatManager
class:
SeatManager(int n)
Initializes aSeatManager
object that will managen
seats numbered from1
ton
. All seats are initially available.int reserve()
Fetches the smallest-numbered unreserved seat, reserves it, and returns its number.void unreserve(int seatNumber)
Unreserves the seat with the givenseatNumber
.
Example 1:
Input ["SeatManager", "reserve", "reserve", "unreserve", "reserve", "reserve", "reserve", "reserve", "unreserve"] [[5], [], [], [2], [], [], [], [], [5]] Output [null, 1, 2, null, 2, 3, 4, 5, null] Explanation SeatManager seatManager = new SeatManager(5); // Initializes a SeatManager with 5 seats. seatManager.reserve(); // All seats are available, so return the lowest numbered seat, which is 1. seatManager.reserve(); // The available seats are [2,3,4,5], so return the lowest of them, which is 2. seatManager.unreserve(2); // Unreserve seat 2, so now the available seats are [2,3,4,5]. seatManager.reserve(); // The available seats are [2,3,4,5], so return the lowest of them, which is 2. seatManager.reserve(); // The available seats are [3,4,5], so return the lowest of them, which is 3. seatManager.reserve(); // The available seats are [4,5], so return the lowest of them, which is 4. seatManager.reserve(); // The only available seat is seat 5, so return 5. seatManager.unreserve(5); // Unreserve seat 5, so now the available seats are [5].
Constraints:
1 <= n <= 105
1 <= seatNumber <= n
- For each call to
reserve
, it is guaranteed that there will be at least one unreserved seat. - For each call to
unreserve
, it is guaranteed thatseatNumber
will be reserved. - At most
105
calls in total will be made toreserve
andunreserve
.
class SeatManager:
def __init__(self, n: int):
self.q = list(range(1, n + 1))
heapify(self.q)
def reserve(self) -> int:
return heappop(self.q)
def unreserve(self, seatNumber: int) -> None:
heappush(self.q, seatNumber)
# Your SeatManager object will be instantiated and called as such:
# obj = SeatManager(n)
# param_1 = obj.reserve()
# obj.unreserve(seatNumber)
class SeatManager {
private PriorityQueue<Integer> q = new PriorityQueue<>();
public SeatManager(int n) {
for (int i = 1; i <= n; ++i) {
q.offer(i);
}
}
public int reserve() {
return q.poll();
}
public void unreserve(int seatNumber) {
q.offer(seatNumber);
}
}
/**
* Your SeatManager object will be instantiated and called as such:
* SeatManager obj = new SeatManager(n);
* int param_1 = obj.reserve();
* obj.unreserve(seatNumber);
*/
class SeatManager {
public:
SeatManager(int n) {
for (int i = 1; i <= n; ++i) {
q.push(i);
}
}
int reserve() {
int seat = q.top();
q.pop();
return seat;
}
void unreserve(int seatNumber) {
q.push(seatNumber);
}
private:
priority_queue<int, vector<int>, greater<int>> q;
};
/**
* Your SeatManager object will be instantiated and called as such:
* SeatManager* obj = new SeatManager(n);
* int param_1 = obj->reserve();
* obj->unreserve(seatNumber);
*/
type SeatManager struct {
q hp
}
func Constructor(n int) SeatManager {
q := hp{}
for i := 1; i <= n; i++ {
heap.Push(&q, i)
}
return SeatManager{q}
}
func (this *SeatManager) Reserve() int {
return heap.Pop(&this.q).(int)
}
func (this *SeatManager) Unreserve(seatNumber int) {
heap.Push(&this.q, seatNumber)
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() interface{} {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}
/**
* Your SeatManager object will be instantiated and called as such:
* obj := Constructor(n);
* param_1 := obj.Reserve();
* obj.Unreserve(seatNumber);
*/