Skip to content

Latest commit

 

History

History
292 lines (250 loc) · 8.46 KB

File metadata and controls

292 lines (250 loc) · 8.46 KB

English Version

题目描述

n 个城市,按从 0n-1 编号。给你一个边数组 edges,其中 edges[i] = [fromi, toi, weighti] 代表 fromi 和 toi 两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold

返回能通过某些路径到达其他城市数目最少、且路径距离 最大 为 distanceThreshold 的城市。如果有多个这样的城市,则返回编号最大的城市。

注意,连接城市 ij 的路径的距离等于沿该路径的所有边的权重之和。

 

示例 1:

输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
输出:3
解释:城市分布图如上。
每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:
城市 0 -> [城市 1, 城市 2] 
城市 1 -> [城市 0, 城市 2, 城市 3] 
城市 2 -> [城市 0, 城市 1, 城市 3] 
城市 3 -> [城市 1, 城市 2] 
城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。

示例 2:

输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
输出:0
解释:城市分布图如上。 
每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:
城市 0 -> [城市 1] 
城市 1 -> [城市 0, 城市 4] 
城市 2 -> [城市 3, 城市 4] 
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3] 
城市 0 在阈值距离 2 以内只有 1 个邻居城市。

 

提示:

  • 2 <= n <= 100
  • 1 <= edges.length <= n * (n - 1) / 2
  • edges[i].length == 3
  • 0 <= fromi < toi < n
  • 1 <= weighti, distanceThreshold <= 10^4
  • 所有 (fromi, toi) 都是不同的。

解法

方法一:Dijkstra 算法

我们可以枚举每个城市 $i$ 作为起点,使用 Dijkstra 算法求出从 $i$ 到其他城市的最短距离,然后统计距离不超过阈值的城市个数,最后取最小的个数且编号最大的城市。

时间复杂度 $O(n^3)$,空间复杂度 $O(n^2)$。其中 $n$ 为城市个数。

Python3

class Solution:
    def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:
        def dijkstra(u):
            dist = [inf] * n
            dist[u] = 0
            vis = [False] * n
            for _ in range(n):
                k = -1
                for j in range(n):
                    if not vis[j] and (k == -1 or dist[k] > dist[j]):
                        k = j
                vis[k] = True
                for j in range(n):
                    dist[j] = min(dist[j], dist[k] + g[k][j])
            return sum(d <= distanceThreshold for d in dist)

        g = [[inf] * n for _ in range(n)]
        for f, t, w in edges:
            g[f][t] = g[t][f] = w

        ans = n
        t = inf
        for i in range(n - 1, -1, -1):
            if (cnt := dijkstra(i)) < t:
                t = cnt
                ans = i
        return ans

Java

class Solution {
    private int n;
    private int[][] g;
    private int[] dist;
    private boolean[] vis;
    private int inf = 1 << 30;
    private int distanceThreshold;

    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
        this.n = n;
        this.distanceThreshold = distanceThreshold;
        g = new int[n][n];
        dist = new int[n];
        vis = new boolean[n];
        for (var e : g) {
            Arrays.fill(e, inf);
        }
        for (var e : edges) {
            int f = e[0], t = e[1], w = e[2];
            g[f][t] = w;
            g[t][f] = w;
        }
        int ans = n, t = inf;
        for (int i = n - 1; i >= 0; --i) {
            int cnt = dijkstra(i);
            if (t > cnt) {
                t = cnt;
                ans = i;
            }
        }
        return ans;
    }

    private int dijkstra(int u) {
        Arrays.fill(dist, inf);
        Arrays.fill(vis, false);
        dist[u] = 0;
        for (int i = 0; i < n; ++i) {
            int k = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (k == -1 || dist[k] > dist[j])) {
                    k = j;
                }
            }
            vis[k] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = Math.min(dist[j], dist[k] + g[k][j]);
            }
        }
        int cnt = 0;
        for (int d : dist) {
            if (d <= distanceThreshold) {
                ++cnt;
            }
        }
        return cnt;
    }
}

C++

class Solution {
public:
    int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {
        const int inf = 1e7;
        vector<vector<int>> g(n, vector<int>(n, inf));
        vector<int> dist(n, inf);
        vector<bool> vis(n);
        for (auto& e : edges) {
            int f = e[0], t = e[1], w = e[2];
            g[f][t] = g[t][f] = w;
        }
        auto dijkstra = [&](int u) {
            dist.assign(n, inf);
            vis.assign(n, false);
            dist[u] = 0;
            for (int i = 0; i < n; ++i) {
                int k = -1;
                for (int j = 0; j < n; ++j) {
                    if (!vis[j] && (k == -1 || dist[j] < dist[k])) {
                        k = j;
                    }
                }
                vis[k] = true;
                for (int j = 0; j < n; ++j) {
                    dist[j] = min(dist[j], dist[k] + g[k][j]);
                }
            }
            int cnt = 0;
            for (int& d : dist) {
                cnt += d <= distanceThreshold;
            }
            return cnt;
        };
        int ans = n, t = inf;
        for (int i = n - 1; ~i; --i) {
            int cnt = dijkstra(i);
            if (t > cnt) {
                t = cnt;
                ans = i;
            }
        }
        return ans;
    }
};

Go

func findTheCity(n int, edges [][]int, distanceThreshold int) int {
	g := make([][]int, n)
	dist := make([]int, n)
	vis := make([]bool, n)
	const inf int = 1e7
	for i := range g {
		g[i] = make([]int, n)
		for j := range g[i] {
			g[i][j] = inf
		}
	}
	for _, e := range edges {
		f, t, w := e[0], e[1], e[2]
		g[f][t], g[t][f] = w, w
	}

	ans, t := n, inf
	dijkstra := func(u int) (cnt int) {
		for i := range vis {
			vis[i] = false
			dist[i] = inf
		}
		dist[u] = 0
		for i := 0; i < n; i++ {
			k := -1
			for j := 0; j < n; j++ {
				if !vis[j] && (k == -1 || dist[j] < dist[k]) {
					k = j
				}
			}
			vis[k] = true
			for j := 0; j < n; j++ {
				dist[j] = min(dist[j], dist[k]+g[k][j])
			}
		}
		for _, d := range dist {
			if d <= distanceThreshold {
				cnt++
			}
		}
		return
	}
	for i := n - 1; i >= 0; i-- {
		cnt := dijkstra(i)
		if t > cnt {
			t = cnt
			ans = i
		}
	}
	return ans
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...