forked from yfeng95/GAN_Theories
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
113 lines (86 loc) · 3.36 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os,sys
sys.path.append('utils')
from nets import *
from datas import *
def sample_z(m, n):
return np.random.uniform(0, 1., size=[m, n])
class VAE():
def __init__(self, generator, discriminator, data):
self.generator = generator
self.discriminator = discriminator
self.data = data
# data
self.z_dim = self.data.z_dim
self.size = self.data.size
self.channel = self.data.channel
self.X = tf.placeholder(tf.float32, shape=[None, self.size, self.size, self.channel])
self.z = tf.placeholder(tf.float32, shape=[None, self.z_dim])
# nets
mu, sigma = self.discriminator(self.X)
latent_code = mu + tf.exp(sigma/2)*self.z
self.G_real = self.generator(latent_code)
self.G_sample = self.generator(self.z)
# loss
# E[log P(X|z)]
epsilon = 1e-8
self.recon = tf.reduce_sum(-self.X * tf.log(self.G_real + epsilon) -(1.0 - self.X) * tf.log(1.0 - self.G_real + epsilon))
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist. are Gaussian
self.kl = 0.5 * tf.reduce_sum(tf.exp(sigma) + tf.square(mu) - 1. - sigma)
self.loss = self.recon + self.kl
# solver
self.learning_rate = tf.placeholder(tf.float32, shape=[])
self.solver = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.loss, var_list=self.generator.vars + self.discriminator.vars)
self.saver = tf.train.Saver()
gpu_options = tf.GPUOptions(allow_growth=True)
self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
self.model_name = 'Models/vae_cifar.ckpt'
def train(self, sample_dir, training_epoches = 500000, batch_size = 32):
fig_count = 0
self.sess.run(tf.global_variables_initializer())
#self.saver.restore(self.sess, self.model_name)
learning_rate_initial = 1e-4
for epoch in range(training_epoches):
learning_rate = learning_rate_initial * pow(0.5, epoch // 50000)
X_b = self.data(batch_size)
self.sess.run(
self.solver,
feed_dict={self.X: X_b, self.z: sample_z(batch_size, self.z_dim), self.learning_rate: learning_rate}
)
# save img, model. print loss
if epoch % 100 == 0 or epoch < 100:
loss_curr = self.sess.run(
self.loss,
feed_dict={self.X: X_b, self.z: sample_z(batch_size, self.z_dim)})
print('Iter: {}; loss: {:.4}'.format(epoch, loss_curr))
if epoch % 1000 == 0:
real, samples = self.sess.run([self.G_real, self.G_sample], feed_dict={self.X: X_b[:16,:,:,:], self.z: sample_z(16, self.z_dim)})
fig = self.data.data2fig(real)
plt.savefig('{}/{}.png'.format(sample_dir, str(fig_count).zfill(3)), bbox_inches='tight')
plt.close(fig)
fig = self.data.data2fig(samples)
plt.savefig('{}/{}_s.png'.format(sample_dir, str(fig_count).zfill(3)), bbox_inches='tight')
plt.close(fig)
fig_count += 1
if epoch % 5000 == 0:
self.saver.save(self.sess, self.model_name)
if __name__ == '__main__':
# constraint GPU
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
# save generated images
sample_dir = 'Samples/vae'
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
# param
generator = G_conv()
discriminator = D_vae()
data = celebA()
# run
vae = VAE(generator, discriminator, data)
vae.train(sample_dir)