-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
457 lines (403 loc) · 22.9 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import json
import numpy as np
import ipaddress
import random
class DataLoader(object):
def __init__(self, max_graph_nodes_nb=50, max_feature_dim=50):
self.source_file = "data/cstnet.json"
self.max_graph_nodes_nb = max_graph_nodes_nb
self.max_feature_dim = max_feature_dim
self.train_val_test_ratio = [0.8, 0.1, 0.1]
self.scs_adj = np.zeros([])
self.scs_adj = np.zeros([])
self.fcf_adj = np.zeros([])
self.fsf_adj = np.zeros([])
self.feature = np.zeros([])
self.mask = np.zeros([])
self.user_id_label = np.zeros([])
def build_data(self):
dataset = []
f = open(self.source_file, 'r', encoding='utf-8')
lines = f.readlines()
f.close()
json_string = ""
for line in lines:
if line[:-1] == '{':
json_string = ""
json_string += line[:-1]
if line[:-1] == '}':
dataset.append(json.loads(json_string))
# Determine the maximum number of nodes in each user_graph as adj.shape
graph_nodes_nb = []
for user_data in dataset:
client_list = []
for i in range(int(user_data['nodes']['node_count'])):
graph_nodes_count = 1
graph_nodes_count += int(user_data['nodes']['node_'+str(i)]['connection_features']['node_count'])
graph_nodes_count += len(user_data['nodes']['node_'+str(i)]['client_features'].keys()) - 1
for j in range(int(user_data['nodes']['node_'+str(i)]['connection_features']['node_count'])):
graph_nodes_count += len(user_data['nodes']['node_'+str(i)]
['connection_features']['node_'+str(j)].keys()) - 1
client_list.append(graph_nodes_count)
graph_nodes_nb.append(client_list)
# Remove outlier data to keep matrix not too sparse
outlier_index = []
for i, nbs in enumerate(graph_nodes_nb):
for nb in nbs:
if nb > self.max_graph_nodes_nb:
outlier_index.append(i)
for i in sorted(outlier_index, reverse=True):
dataset.pop(i)
graph_nodes_nb.pop(i)
# adj_shape = max([max(nb) for nb in graph_nodes_nb])
adj_shape = 49
clients_nb = sum([len(nb) for nb in graph_nodes_nb])
user_nb = len(graph_nodes_nb)
print("----- User data info -----")
print("max graph nb.node limit: ", self.max_graph_nodes_nb)
print("max feature dim limit: ", self.max_feature_dim)
print("nb.user: ", user_nb)
print("nb.client node: ", clients_nb)
print("max graph nb.node: ", adj_shape)
# Build adj matrix for each graph (SCS, FCF, FSF)
scs_adj = np.zeros((clients_nb, adj_shape, adj_shape))
fcf_adj = np.zeros((clients_nb, adj_shape, adj_shape))
fsf_adj = np.zeros((clients_nb, adj_shape, adj_shape))
client_index = 0
for user_data in dataset:
for i in range(int(user_data['nodes']['node_count'])):
# SCS
read_node_index = 0
read_node_index += 1
server_nb = int(user_data['nodes']['node_'+str(i)]['connection_features']['node_count'])
for j in range(read_node_index, read_node_index + server_nb):
scs_adj[client_index+i][0][j] = 1.0
scs_adj[client_index+i][j][0] = 1.0
read_node_index += server_nb
# FCF
client_field_nb = len(user_data['nodes']['node_' + str(i)]['client_features'].keys()) - 1
for j in range(read_node_index, read_node_index + client_field_nb):
fcf_adj[client_index+i][0][j] = 1.0
fcf_adj[client_index+i][j][0] = 1.0
read_node_index += client_field_nb
# FSF
for j in range(server_nb):
server_field_nb = len(user_data['nodes']['node_'+str(i)]
['connection_features']['node_'+str(j)].keys()) - 1
for k in range(read_node_index, read_node_index + server_field_nb):
fsf_adj[client_index+i][j+1][k] = 1.0
fsf_adj[client_index+i][k][j+1] = 1.0
read_node_index += server_field_nb
client_index += int(user_data['nodes']['node_count'])
# Build vocabulary
vocabulary = []
vocabulary.extend(['<PAD>', '<UNK>'])
vocabulary.extend([str(i) for i in range(10)])
vocabulary.extend([chr(i) for i in range(97, 123)])
vocabulary.extend([' ', '.', ';', ':', '*', '-', '\'', '/', '(', ')', '&', ',', '_'])
# token2char_dict = {token: char for token, char in enumerate(vocabulary)}
char2token_dict = {char: token for token, char in enumerate(vocabulary)}
# Build node feature
feature = np.zeros((clients_nb, adj_shape, self.max_feature_dim))
client_index = 0
for user_data in dataset:
for i in range(int(user_data['nodes']['node_count'])):
# Client node
read_node_index = 0
ip = ipaddress.ip_address(user_data['nodes']['node_'+str(i)]['client_features']['ip']).exploded
node_feature = self.char2token(char2token_dict, ''.join(ip.split(':')))
feature[client_index+i][0][:len(node_feature)] = node_feature
read_node_index += 1
# Server nodes
server_nb = int(user_data['nodes']['node_'+str(i)]['connection_features']['node_count'])
for j in range(read_node_index, read_node_index + server_nb):
ip = ipaddress.ip_address(user_data['nodes']['node_'+str(i)]
['connection_features']['node_'+str(j-1)]['ip']).exploded
node_feature = self.char2token(char2token_dict, ''.join(ip.split(':')))
feature[client_index+i][j][:len(node_feature)] = node_feature
read_node_index += server_nb
# Client field nodes
client_field_nb = len(user_data['nodes']['node_'+str(i)]['client_features'].keys()) - 1
keys = sorted(list(user_data['nodes']['node_'+str(i)]['client_features'].keys() - ["ip"]))
for j, key in zip(range(read_node_index, read_node_index + client_field_nb), keys):
# if key == 'ciphersuites':
if 'ciphersuites' in key:
ciphersuites = ''.join(user_data['nodes']['node_'+str(i)]['client_features'][key])
node_feature = self.char2token(char2token_dict, ciphersuites)
elif key == 'com_method':
com_method = user_data['nodes']['node_'+str(i)]['client_features'][key]
if str(type(com_method)) == '<class \'str\'>':
node_feature = self.char2token(char2token_dict, com_method)
else:
node_feature = self.char2token(char2token_dict, ''.join(com_method))
else:
node_feature = self.char2token(char2token_dict,
user_data['nodes']['node_'+str(i)]['client_features'][key])
if len(node_feature) <= self.max_feature_dim:
feature[client_index+i][j][:len(node_feature)] = node_feature
else:
feature[client_index+i][j] = node_feature[:self.max_feature_dim]
# Server field nodes
read_node_index += client_field_nb
for j in range(server_nb):
server_field_nb = len(user_data['nodes']['node_'+str(i)]
['connection_features']['node_'+str(j)].keys()) - 1
keys = sorted(list(user_data['nodes']['node_'+str(i)]
['connection_features']['node_'+str(j)].keys() - ["ip"]))
for k, key in zip(range(read_node_index, read_node_index + server_field_nb), keys):
if key == 'stream_count':
stream_count = str(user_data['nodes']['node_'+str(i)]
['connection_features']['node_'+str(j)][key])
node_feature = self.char2token(char2token_dict, stream_count)
elif key == 'first_connection':
first_connection = ''.join(user_data['nodes']['node_'+str(i)]
['connection_features']['node_'+str(j)][key].split('_'))
node_feature = self.char2token(char2token_dict, first_connection)
else:
node_feature = self.char2token(char2token_dict,
user_data['nodes']['node_'+str(i)]
['connection_features']['node_'+str(j)][key])
if len(node_feature) <= self.max_feature_dim:
feature[client_index+i][k][:len(node_feature)] = node_feature
else:
feature[client_index+i][k] = node_feature[:self.max_feature_dim]
read_node_index += server_field_nb
client_index += int(user_data['nodes']['node_count'])
# Build mask matrix
mask = np.zeros((clients_nb, adj_shape))
index = 0
for user_graphs in graph_nodes_nb:
for nb in user_graphs:
mask[index][:nb] = 1
index += 1
# Build user id labels
user_id_label = np.zeros((clients_nb, 1))
index = 0
for i, user_graphs in enumerate(graph_nodes_nb):
for _ in user_graphs:
user_id_label[index] = i
index += 1
# Used for inference
self.scs_adj, self.fcf_adj, self.fsf_adj, self.feature, self.user_id_label, self.mask\
= scs_adj, fcf_adj, fsf_adj, feature, user_id_label, mask
print("----- Build graph data -----")
print("SCS adj.shape: ", scs_adj.shape)
print("FCF adj.shape: ", fcf_adj.shape)
print("FSF adj.shape: ", fsf_adj.shape)
print("node feature.shape: ", feature.shape)
print("mask.shape: ", mask.shape)
print("user_label.shape: ", user_id_label.shape)
# Used for training
scs_adj, fcf_adj, fsf_adj, feature, mask, label = self.load_data(scs_adj, fcf_adj, fsf_adj,
feature, mask, user_id_label)
scs_biases, fcf_biases, fsf_biases, feature = self.preprocess(scs_adj, fcf_adj, fsf_adj, feature)
return scs_biases, fcf_biases, fsf_biases, feature, mask, label
def load_data(self, scs_adj, fcf_adj, fsf_adj, feature, mask, user_id_label):
# Keep nb.neg sample = nb.pos sample
data_pair = []
label = []
for i in range(len(user_id_label) - 1):
for j in range(i + 1, len(user_id_label)):
data_pair.append((i, j))
if user_id_label[i] == user_id_label[j]:
label.append(1)
# elif user_id_label[i] != user_id_label[j] and (feature[i][0][:12] == feature[j][0][:12]).all():
# label.append(2)
else:
label.append(0)
label = np.array(label)
pos_index = np.argwhere(label == 1)
neg_index = np.argwhere(label == 0)
nb_samples = 10000 # Change with a suitable number for the dataset
# test mode - mask this part of codes
temp_index = pos_index
for _ in range(int(nb_samples / len(pos_index))-1):
temp_index = np.concatenate([temp_index, pos_index], axis=0)
pos_index = temp_index
neg_index_sample = random.sample(range(0, len(neg_index)), len(pos_index))
neg_index = neg_index[neg_index_sample]
# Build train val test data
pos_pair = [data_pair[pos_index[i][0]] for i in range(len(pos_index))]
neg_pair = [data_pair[neg_index[i][0]] for i in range(len(neg_index))]
random.shuffle(pos_pair)
random.shuffle(neg_pair)
assert sum(self.train_val_test_ratio) <= 1 and 0 not in self.train_val_test_ratio
train_pos_nb = int(len(pos_pair) * self.train_val_test_ratio[0])
val_pos_nb = int(len(pos_pair) * self.train_val_test_ratio[1])
test_pos_nb = len(pos_pair) - train_pos_nb - val_pos_nb
train_neg_nb = int(len(neg_pair) * self.train_val_test_ratio[0])
val_neg_nb = int(len(neg_pair) * self.train_val_test_ratio[1])
test_neg_nb = len(neg_pair) - train_neg_nb - val_neg_nb
train_scs_adj = np.zeros((2, train_pos_nb + train_neg_nb, scs_adj.shape[1], scs_adj.shape[2]))
val_scs_adj = np.zeros((2, val_pos_nb + val_neg_nb, scs_adj.shape[1], scs_adj.shape[2]))
test_scs_adj = np.zeros((2, test_pos_nb + test_neg_nb, scs_adj.shape[1], scs_adj.shape[2]))
train_fcf_adj = np.zeros((2, train_pos_nb + train_neg_nb, fcf_adj.shape[1], fcf_adj.shape[2]))
val_fcf_adj = np.zeros((2, val_pos_nb + val_neg_nb, fcf_adj.shape[1], fcf_adj.shape[2]))
test_fcf_adj = np.zeros((2, test_pos_nb + test_neg_nb, fcf_adj.shape[1], fcf_adj.shape[2]))
train_fsf_adj = np.zeros((2, train_pos_nb + train_neg_nb, fsf_adj.shape[1], fsf_adj.shape[2]))
val_fsf_adj = np.zeros((2, val_pos_nb + val_neg_nb, fsf_adj.shape[1], fsf_adj.shape[2]))
test_fsf_adj = np.zeros((2, test_pos_nb + test_neg_nb, fsf_adj.shape[1], fsf_adj.shape[2]))
train_feature = np.zeros((2, train_pos_nb + train_neg_nb, feature.shape[1], feature.shape[2]))
val_feature = np.zeros((2, val_pos_nb + val_neg_nb, feature.shape[1], feature.shape[2]))
test_feature = np.zeros((2, test_pos_nb + test_neg_nb, feature.shape[1], feature.shape[2]))
train_mask = np.zeros((train_pos_nb + train_neg_nb, mask.shape[1]))
val_mask = np.zeros((val_pos_nb + val_neg_nb, mask.shape[1]))
test_mask = np.zeros((test_pos_nb + test_neg_nb, mask.shape[1]))
index = 0
for graph_1_index, graph_2_index in pos_pair[:train_pos_nb]:
train_feature[0][index] = feature[graph_1_index]
train_feature[1][index] = feature[graph_2_index]
train_scs_adj[0][index] = scs_adj[graph_1_index]
train_scs_adj[1][index] = scs_adj[graph_2_index]
train_fcf_adj[0][index] = fcf_adj[graph_1_index]
train_fcf_adj[1][index] = fcf_adj[graph_2_index]
train_fsf_adj[0][index] = fsf_adj[graph_1_index]
train_fsf_adj[1][index] = fsf_adj[graph_2_index]
train_mask[index] = mask[graph_1_index] \
if np.sum(mask[graph_1_index]) <= np.sum(mask[graph_2_index]) else mask[graph_2_index]
index += 1
for graph_1_index, graph_2_index in neg_pair[:train_neg_nb]:
train_feature[0][index] = feature[graph_1_index]
train_feature[1][index] = feature[graph_2_index]
train_scs_adj[0][index] = scs_adj[graph_1_index]
train_scs_adj[1][index] = scs_adj[graph_2_index]
train_fcf_adj[0][index] = fcf_adj[graph_1_index]
train_fcf_adj[1][index] = fcf_adj[graph_2_index]
train_fsf_adj[0][index] = fsf_adj[graph_1_index]
train_fsf_adj[1][index] = fsf_adj[graph_2_index]
train_mask[index] = mask[graph_1_index] \
if np.sum(mask[graph_1_index]) <= np.sum(mask[graph_2_index]) else mask[graph_2_index]
index += 1
index = 0
for graph_1_index, graph_2_index in pos_pair[train_pos_nb:train_pos_nb + val_pos_nb]:
val_feature[0][index] = feature[graph_1_index]
val_feature[1][index] = feature[graph_2_index]
val_scs_adj[0][index] = scs_adj[graph_1_index]
val_scs_adj[1][index] = scs_adj[graph_2_index]
val_fcf_adj[0][index] = fcf_adj[graph_1_index]
val_fcf_adj[1][index] = fcf_adj[graph_2_index]
val_fsf_adj[0][index] = fsf_adj[graph_1_index]
val_fsf_adj[1][index] = fsf_adj[graph_2_index]
val_mask[index] = mask[graph_1_index] \
if np.sum(mask[graph_1_index]) <= np.sum(mask[graph_2_index]) else mask[graph_2_index]
index += 1
for graph_1_index, graph_2_index in neg_pair[train_neg_nb:train_neg_nb + val_neg_nb]:
val_feature[0][index] = feature[graph_1_index]
val_feature[1][index] = feature[graph_2_index]
val_scs_adj[0][index] = scs_adj[graph_1_index]
val_scs_adj[1][index] = scs_adj[graph_2_index]
val_fcf_adj[0][index] = fcf_adj[graph_1_index]
val_fcf_adj[1][index] = fcf_adj[graph_2_index]
val_fsf_adj[0][index] = fsf_adj[graph_1_index]
val_fsf_adj[1][index] = fsf_adj[graph_2_index]
val_mask[index] = mask[graph_1_index] \
if np.sum(mask[graph_1_index]) <= np.sum(mask[graph_2_index]) else mask[graph_2_index]
index += 1
index = 0
for graph_1_index, graph_2_index in pos_pair[-test_pos_nb:]:
test_feature[0][index] = feature[graph_1_index]
test_feature[1][index] = feature[graph_2_index]
test_scs_adj[0][index] = scs_adj[graph_1_index]
test_scs_adj[1][index] = scs_adj[graph_2_index]
test_fcf_adj[0][index] = fcf_adj[graph_1_index]
test_fcf_adj[1][index] = fcf_adj[graph_2_index]
test_fsf_adj[0][index] = fsf_adj[graph_1_index]
test_fsf_adj[1][index] = fsf_adj[graph_2_index]
test_mask[index] = mask[graph_1_index] \
if np.sum(mask[graph_1_index]) <= np.sum(mask[graph_2_index]) else mask[graph_2_index]
index += 1
for graph_1_index, graph_2_index in neg_pair[-test_neg_nb:]:
test_feature[0][index] = feature[graph_1_index]
test_feature[1][index] = feature[graph_2_index]
test_scs_adj[0][index] = scs_adj[graph_1_index]
test_scs_adj[1][index] = scs_adj[graph_2_index]
test_fcf_adj[0][index] = fcf_adj[graph_1_index]
test_fcf_adj[1][index] = fcf_adj[graph_2_index]
test_fsf_adj[0][index] = fsf_adj[graph_1_index]
test_fsf_adj[1][index] = fsf_adj[graph_2_index]
test_mask[index] = mask[graph_1_index] \
if np.sum(mask[graph_1_index]) <= np.sum(mask[graph_2_index]) else mask[graph_2_index]
index += 1
train_label = np.concatenate((np.ones(train_pos_nb), np.zeros(train_neg_nb)))
val_label = np.concatenate((np.ones(val_pos_nb), np.zeros(val_neg_nb)))
test_label = np.concatenate((np.ones(test_pos_nb), np.zeros(test_neg_nb)))
print("----- Build pair samples -----")
print('nb.pos pair: ', len(pos_pair))
print('nb.neg pair: ', len(neg_pair))
print("train val test ratio: ", self.train_val_test_ratio)
print("nb.train pair: ", len(train_feature[0]))
print("nb.val pair: ", len(val_feature[0]))
print("nb.test pair: ", len(test_feature[0]))
# Shuffle data
train_index = np.arange(len(train_feature[0]))
val_index = np.arange(len(val_feature[0]))
test_index = np.arange(len(test_feature[0]))
np.random.shuffle(train_index)
np.random.shuffle(val_index)
np.random.shuffle(test_index)
for i in [0, 1]:
train_scs_adj[i] = train_scs_adj[i][train_index]
train_fcf_adj[i] = train_fcf_adj[i][train_index]
train_fsf_adj[i] = train_fsf_adj[i][train_index]
train_feature[i] = train_feature[i][train_index]
val_scs_adj[i] = val_scs_adj[i][val_index]
val_fcf_adj[i] = val_fcf_adj[i][val_index]
val_fsf_adj[i] = val_fsf_adj[i][val_index]
val_feature[i] = val_feature[i][val_index]
test_scs_adj[i] = test_scs_adj[i][test_index]
test_fcf_adj[i] = test_fcf_adj[i][test_index]
test_fsf_adj[i] = test_fsf_adj[i][test_index]
test_feature[i] = test_feature[i][test_index]
train_mask = train_mask[train_index]
val_mask = val_mask[val_index]
test_mask = test_mask[test_index]
train_label = train_label[train_index]
val_label = val_label[val_index]
test_label = test_label[test_index]
return [train_scs_adj, val_scs_adj, test_scs_adj], [train_fcf_adj, val_fcf_adj, test_fcf_adj], \
[train_fsf_adj, val_fsf_adj, test_fsf_adj], [train_feature, val_feature, test_feature], \
[train_mask, val_mask, test_mask], [train_label, val_label, test_label]
def preprocess(self, scs_adj, fcf_adj, fsf_adj, feature):
scs_biases = [np.array([self.adj_to_bias(pair, [pair.shape[1]]*pair.shape[0], nhood=1)
for pair in split_data]) for split_data in scs_adj]
fcf_biases = [np.array([self.adj_to_bias(pair, [pair.shape[1]]*pair.shape[0], nhood=1)
for pair in split_data]) for split_data in fcf_adj]
fsf_biases = [np.array([self.adj_to_bias(pair, [pair.shape[1]]*pair.shape[0], nhood=1)
for pair in split_data]) for split_data in fsf_adj]
feature = [np.array([[self.preprocess_features(feature_graph) for feature_graph in pair]
for pair in split_data]) for split_data in feature]
return scs_biases, fcf_biases, fsf_biases, feature
def char2token(self, vocabulary_dict, field_value):
feature_value = []
for c in field_value:
if c not in vocabulary_dict.keys():
feature_value.append(vocabulary_dict['<UNK>'])
else:
feature_value.append(vocabulary_dict[c])
return feature_value
def adj_to_bias(self, adj, sizes, nhood=1):
"""
Prepare adjacency matrix by expanding up to a given neighbourhood.
This will insert loops on every node.
Finally, the matrix is converted to bias vectors.
Expected shape: [graph, nodes, nodes]
"""
nb_graphs = adj.shape[0]
mt = np.empty(adj.shape)
for g in range(nb_graphs):
mt[g] = np.eye(adj.shape[1])
for _ in range(nhood):
mt[g] = np.matmul(mt[g], (adj[g] + np.eye(adj.shape[1])))
for i in range(sizes[g]):
for j in range(sizes[g]):
if mt[g][i][j] > 0.0:
mt[g][i][j] = 1.0
return -1e9 * (1.0 - mt)
def preprocess_features(self, features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = np.diag(r_inv)
features = r_mat_inv.dot(features)
return features