-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlobpcg.cpp
646 lines (593 loc) · 30.7 KB
/
lobpcg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#include "lobpcg.h"
#include "ortho.h"
#include "utils.h"
#include <Eigen/Dense>
#include <iostream>
#include <iomanip>
#include <cassert>
/**
* @brief Main driver for the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method.
*
* This function is the primary driver for the LOBPCG algorithm, which is an iterative method for solving
* large sparse eigenvalue problems. The function aims to compute the specified number of eigenpairs
* of a given matrix or matrix pencil.
*
* solve Ax = \lambda Bx, block version AX = \lambda BX, where B is optional
*
* @param[in] avec Ax - Function pointer for the matrix-vector multiplication with the main operator A.
* @param[in] precnd Function pointer for applying the preconditioner. The function should accept the size of the matrix,
* the number of vectors, the shift value, the input vectors, and the vectors to be preconditioned.
* @param[in] bvec Bx - Function pointer for the matrix-vector multiplication with the B operator (only used in the generalized case).
* @param[in,out] eig Reference to a vector where the computed eigenvalues will be stored, in ascending order if converged.
* @param[in,out] evec Reference to a blockvector with an initial guess for the eigenvectors; upon successful convergence, it will contain
* the computed eigenvectors.
* @param[in] n Size of the matrix to be diagonalized.
* @param[in] n_eigenpairs Number of required eigenpairs to be computed.
* @param[in] n_max_subspace Maximum size of the search subspace. should be greater than n_eigenpairs.
* for better convergence, a value larger than n_eigenpairs (eg., n_eigenpairs + 10) is recommended.
* @param[in] solving_generalized Boolean flag indicating whether the problem is a generalized eigenvalue problem.
* @param[in] max_iter Maximum allowed number of iterations for convergence.
* @param[in] tol Convergence threshold for the eigenvalues.
* @param[in] shift Diagonalshift value for the eigenvalue problem.
* @param[in] verbose Logical flag to control the verbosity, whether to print intermediate results
* at each iteration (eigenvalues, residuals...)
*/
int lobpcg_solve(
void (*avec)(int n, int m, const Eigen::MatrixXd& vecs, Eigen::MatrixXd& avecs), // AX, external operator for X nxm
void (*precnd)(int n, int m, const Eigen::MatrixXd& vecs, Eigen::MatrixXd& tvecs, double shift), // TX, shift-and-invert preconditioner for X nxm
void (*bvec)(int n, int m, const Eigen::MatrixXd& vecs, Eigen::MatrixXd& bvecs), // BX, external operator for X nxm
Eigen::VectorXd& eig, // lambdas, should be allocated size n_max_subspace
Eigen::MatrixXd& evec, // X, should be allocated size (n,n_max_subspace)
int n, // size of A, B
int n_eigenpairs, // X(n, n_eigenpairs)
int n_max_subspace, // maximum size of the search subspace
bool solving_generalized, // true for generalized, B=I if false
int max_iter, // maximum number of iterations
double tol, // tolerance for convergence test
double shift, // shift for Cholesky & precnd
bool verbose // print intermediate results if true
){
/* ! note that eig and evec should be allocated n_max_subspace and (n,n_max_subspace),
not n_eigenpairs and (n,n_eigenpairs) */
std::cout << "LOBPCG solving eigenpairs of size " << n_eigenpairs << " with supspace of size " << n_max_subspace << std::endl;
// 设置输出格式,这里设置浮点数的精度为5位小数
Eigen::IOFormat fmt(5);
// Eigen::IOFormat fmt(5, Eigen::DontAlignCols, ", ", ";\n", "", "", "[", "]");
// --- 0. allocate and initialize ---
/* 0.1 allocate memory for expansion space, and corresponding Matrix-Vector results and residuals
X(n, n_max_subspace), P(n, n_active), W(n, n_active)
2 ways of doing x, w, p
1. we can construct v, av, A_reduced = V'AV only when needed by Rayleigh-Ritz instead of stroring x, w, p together in v
2. we can use v as [x p w] and access different parts of v as x, p, w
https://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html block params need to be passed as MatrixBase<>
As it is often confusing to use Eigen's templated base classes, we will use <1> (i.e. to construct A_reduced as needed).
*/
int size_space = 3*n_max_subspace; // total max space size of V = [x p w]
// dynamic searching space V(n, n_working_space) = [x p w]
// n_working_space=n_max_subspace+2*n_active will change in the main loop
Eigen::MatrixXd v(n, size_space);
Eigen::MatrixXd av(n, size_space);
/* since we only use bx, bp for b-orthogonalization of w(in need of [x p], [wx wp])
we will not store bv but to get b[x p] when needed(in 2.7) instead */
Eigen::MatrixXd bv(n, size_space);
v.setZero(); av.setZero(); bv.setZero();
/* 0.2 allocate memory for temporary copies of X, AX, BX */
Eigen::MatrixXd x(n, n_max_subspace); // X(n, n_max_subspace)
Eigen::MatrixXd ax(n, n_max_subspace);
Eigen::MatrixXd bx(n, n_max_subspace);
x.setZero(); ax.setZero(); bx.setZero();
Eigen::MatrixXd r(n, n_max_subspace); // residuals, r(n, n_active)
Eigen::MatrixXd w(n, n_max_subspace); // preconditioned residuals w(n, n_active)
Eigen::MatrixXd aw(n, n_max_subspace);
Eigen::MatrixXd bw(n, n_max_subspace); // only used for b-ortho w
r.setZero(); w.setZero(); aw.setZero(); bw.setZero();
Eigen::MatrixXd p(n, n_max_subspace); // implicit difference between current and previous eigvec approx, P(n, n_active)
Eigen::MatrixXd ap(n, n_max_subspace);
Eigen::MatrixXd bp(n, n_max_subspace);
p.setZero(); ap.setZero(); bp.setZero();
/* 0.3 allocate memory for the reduced matrix and its eigenvalues */
/* soft locking by Knyazev, all X, active p, active w will engage in Rayleigh-Ritz */
// dynamic size A_reduced(n_working_space, n_working_space), eig_reduced(n_working_space)
// the subspace expands from V=[X] to v=[x p w], A_reduced = v'av
// where X has the width of n_max_subspace, while W and P have the width of n_active
Eigen::MatrixXd A_reduced(size_space, size_space); A_reduced.setZero();
Eigen::VectorXd eig_reduced(size_space); eig_reduced.setZero();
/* 0.4 allocate memory for convergence check */
// Eigen::VectorXi activeMask(n_max_subspace) will be defined before we start main loop
Eigen::VectorXd r_norm_2(n_max_subspace); // 2-norm of preconditioned-residuals
/* 0.5 initialize time variables */
auto tp_start = get_current_time(); // tp means 'time point', different type from duration
auto tp_end = get_current_time();
auto tp_1 = get_current_time(); // temp time point 1 for inner durations
auto tp_2 = get_current_time(); // temp time point 2 for inner durations
// duration = tp_2 - tp_1, duration.count() returns second elapsed
std::chrono::duration<double> t_solveRR, t_avec, t_ortho, t_total;
int eig_flag = LOBPCG_CONSTANTS::eig_success; // flag for eigensolver
// --- 1. first iter --- explicitly do the first Rayleigh-Ritz of X'AX
tp_start = get_current_time(); // start timing for the whole iteration algorithm
/* 1.0 check for guess */
/* check for initial guess. If not set(all zeros), generate a random
guess from values in Uniform[0,1), and then orthogonalize */
// evec << -0.045008846777,-0.012487056830, 0.451774729742,
// -0.595457985511,-0.302271780449, 0.262108946955,
// -0.683658739782,-0.026606629965,-0.547438361389,
// -0.214624268522,-0.097081891179, 0.451904306374,
// -0.326352098345, 0.603950319551, 0.108625784707,
// -0.115209128264, 0.356526801138, 0.228854930509,
// 0.075833974684, 0.399936355871,-0.300634194996,
// 0.045339444223,-0.459789809603,-0.236122012805,
// -0.048640002418,-0.187403125974, 0.113945458005;
check_init_guess(n, n_max_subspace, evec); // now evec contains orthogonal initial guess
#ifdef DEBUG_LOBPCG
std::cout << "initial guess = \n" << evec << std::endl;
#endif
/* if solving generalized problem, compute bvec and do b-ortho */
if(solving_generalized) {
bvec(n, n_max_subspace, evec, bx); // bx <- b*evec
b_ortho(n, n_max_subspace, evec, bx); // b-ortho bx against evec
#ifdef DEBUG_LOBPCG
std::cout << "init bx = \n" << bx << std::endl;
std::cout << "guess (x)'(bx) = \n" << x.transpose() * bx << std::endl;
#endif
}
/* --- Rayleigh-Ritz --- */
/* 1.1 construct the reduced matrix and diagonalization to get first-round eigenpairs */
x = evec; /* x <- evec */
tp_1 = get_current_time();
avec(n, n_max_subspace, evec, ax); /* ax <- a*evec */
tp_2 = get_current_time();
t_avec += tp_2 - tp_1;
// av.leftCols(n_max_subspace) = ax;
/* BV <- bx, bx generated before in 1.0 */
// if(solving_generalized){bv.leftCols(n_max_subspace) = bx;}
/* first round, A_reduced <- X' * AX */
A_reduced = x.transpose() * ax;
/* do eigen A_reduced u = \lambda u */
/* first round, solves only A_reduced = x'ax (n_max_subspace, n_max_subspace)
get to use bigger A_reduced later
as the subspace expands from [X] to [x p w] */
#ifdef DEBUG_LOBPCG
std::cout << "first round A_reduced = \n" << A_reduced << std::endl;
#endif
tp_1 = get_current_time();
eig_flag = selfadjoint_eigensolver(A_reduced, eig_reduced, n_max_subspace); // V=[X], use(n, n_max_subspace) of (n, 3*n_max_subspace)
if(eig_flag == LOBPCG_CONSTANTS::eig_fail){
std::cerr << "eigensolver failed in first round" << std::endl;
return LOBPCG_CONSTANTS::fail;
}
#ifdef DEBUG_LOBPCG
std::cout << "first round A_reduced diag = \n" << A_reduced << std::endl;
std::cout << "first round A_reduced' * A_reduced = \n" << A_reduced.transpose()*A_reduced << std::endl;
#endif
/* now A_reduced(n_max_subspace, n_max_subspace) contains eigenvectors and eig_reduced contains eigenvalues */
tp_2 = get_current_time();
t_solveRR += tp_2 - tp_1;
eig = eig_reduced.head(n_max_subspace);
/* 1.2 compute the Ritz vectors, X, AX and if required, BX */
/* update new guess X_1 = X_0 * u, update corresponding V[X] left n_max_subspace columns */
/* x <- x * A_reduced*/
x = x * A_reduced.topLeftCorner(n_max_subspace,n_max_subspace);
// v.leftCols(n_max_subspace) = v.leftCols(n_max_subspace) * A_reduced.topLeftCorner(n_max_subspace,n_max_subspace);
/* ax <- ax * A_reduced*/
ax = ax * A_reduced.topLeftCorner(n_max_subspace,n_max_subspace);
// av.leftCols(n_max_subspace) = av.leftCols(n_max_subspace) * A_reduced.topLeftCorner(n_max_subspace,n_max_subspace);
/* bx <- bx *A_reduced*/
if(solving_generalized){
#ifdef DEBUG_GENERALIZED
std::cout << "doing bx = bx * A_reduced" << std::endl;
#endif
bx = bx * A_reduced.topLeftCorner(n_max_subspace,n_max_subspace);
// bv.leftCols(n_max_subspace) = bv.leftCols(n_max_subspace) * A_reduced.topLeftCorner(n_max_subspace,n_max_subspace);
}
/* 1.3 compute the residuals and norms */
/* r <- Ax - eig Bx */
r = ax; // r = av.leftCols(n_max_subspace);
if(solving_generalized){
for(int i=0; i<n_max_subspace; ++i) r.col(i) -= eig(i) * bx.col(i);
}else{ // b = I
for(int i=0; i<n_max_subspace; ++i) r.col(i) -= eig(i) * x.col(i);
}
/* 1.4 compute the preconditioned residuals W = TR */
precnd(n, n_max_subspace, r, w, shift - eig(0)); // w = t * r
/* 1.5 orthogonalize W; and then orthonormalize it */
tp_1 = get_current_time(); // t_ortho
if(solving_generalized) { /* compute and b-orthogonalize bw */
#ifdef DEBUG_GENERALIZED
std::cout << "1.5 compute and b-orthogonalize bw" << std::endl;
#endif
b_ortho_against_y(n, n_max_subspace, n_max_subspace, w, x, bx);
bvec(n, n_max_subspace, w, bw); // bw = b*w
b_ortho(n, n_max_subspace, w, bw); // b-orthogonalize w and bw
} else {
ortho_against_y(n, n_max_subspace, n_max_subspace, w, x); // orthogonalize w to x
}
tp_2 = get_current_time();
t_ortho += tp_2 - tp_1;
/* 1.6 build first round v and av */
/* v = [X W] 0~n_max_subspace-1 | n_max_subspace~2*n_max_subspace-1 */
/* size n x (n_max_subspace | n_max_subspace)*/
v.leftCols(n_max_subspace) = x;
av.leftCols(n_max_subspace) = ax;
int index_w = n_max_subspace;
v.middleCols(index_w, n_max_subspace) = w; // now v = [X w], w of width n_max_subspace
if(solving_generalized){
bv.leftCols(n_max_subspace) = bx;
bv.middleCols(index_w, n_max_subspace) =bw;
}
// --- 2. main loop ---
#ifdef DEBUG_LOBPCG
// std::cout << "before main loop: v = \n" << v << std::endl << "before main loop: av = \n" << av << std::endl;
// std::cout << "v'av = \n" << v.transpose()*av << std::endl;
#endif
/* prepare for the main loop, initialize parameters */
// X size(n, n_max_subspace), W size(n, n_active), P size(n, n_active) in loop
// active searching size of w and p n_active, changed when checking residuals and locking
int n_active = n_max_subspace;
int n_working_space = 2*n_max_subspace; // init [x w], later will be [x p w] size
const int ACTIVE = 1;
const int INACTIVE = 0;
Eigen::VectorXi activeMask(n_max_subspace); /* active mask can be 0 or 1, indicating whether x_i, w_i and p_i are active or not*/
activeMask.setConstant(ACTIVE); // at first, all vecs are active
if(verbose){
std::cout << "\nLOBPCG iter starts with max_iter = " << max_iter
<< " and tolerance = " << tol << std::endl;
std::cout << "----------------------------------------------------------------------" << std::endl;
// std::cout << "iter# root eigenvalues residuals converged" << std::endl;
std::cout << std::left;
std::cout << std::setw(12) << "iter#"
<< std::setw(13) << "root"
<< std::setw(20) << "eigenvalues"
<< std::setw(20) << "residuals"
<< std::setw(11) << "converged"
<< std::endl;
}
int iter = 0;
/* ----------------------------------------------------------------------*/
/* start main loop */
for(iter = 0; iter < max_iter; ++iter){
/* --- Rayleigh-Ritz --- */
#ifdef DEBUG_LOBPCG
std::cout << "\n\n----- starts Loop #" << iter << " -----" << std::endl;
#endif
/* 2.1 matrix-blockvector multiplication, calculate aw = a*w */
// aw = w; // resize
aw.resize(Eigen::NoChange, n_active); // resize to (n, n_active)
tp_1 = get_current_time(); // avec
avec(n, n_active, w, aw); // aw = a*w(n, n_active)
tp_2 = get_current_time();
t_avec += tp_2 - tp_1;
av.middleCols(index_w, n_active) = aw;
// av = [ax ap aw]
// [n_max_subspace | n_active | n_active]
// ^ index_w = n_max_subspace + n_active
#ifdef DEBUG_LOBPCG
std::cout << "2.2 construct the reduced matrix and diagonalization" << std::endl;
// std::cout << "v and av for constructing reduced matrix: \n";
// std::cout << "v = \n" << v << std::endl;
// std::cout << "av = \n" << av << std::endl;
#endif
/* 2.2 construct the reduced matrix and diagonalization */
/* v = [x p w]*/
/* size[
x [0..n_max_subspace), n_max_subspace in total
p [n_max_subspace..n_max_subspace+n_active) n_active in total
w [n_max_subspace+n_active..n_max_subspace+2*n_active) n_active in total
]*/
/* notice: here w and p should be of size(n, n_active),
or the assignment of v will fail */
/* av = a*v, v(n, n_working_space) */
// avec(n, n_working_space, v, av); av is made the same time as v by merging [x p w]
/* notice that X full(active and locked) still engage in Rayleigh-Ritz */
//!!!!! when iter #0, v = [x w], no p here, we would not have blank columns in A_reduced,
// which leads to incorrect size of A_reduced(n_max_subspace blank columns, 0 eigenvalues and unit eigenvectors)
n_working_space = n_max_subspace + 2*n_active; // current valid v size v(n, n_working_space)
if(0 == iter) n_working_space = 2*n_max_subspace;
A_reduced = v.leftCols(n_working_space).transpose() * av.leftCols(n_working_space);
#ifdef DEBUG_EIGENSOLVER
std::cout << "A_reduced before = \n" << A_reduced << std::endl;
#endif
tp_1 = get_current_time(); // t_solveRR
eig_flag = selfadjoint_eigensolver(A_reduced, eig_reduced , n_working_space);
if(eig_flag == LOBPCG_CONSTANTS::eig_fail){
std::cerr << "eigensolver failed in round " << iter << std::endl;
return LOBPCG_CONSTANTS::fail;
}
tp_2 = get_current_time();
t_solveRR += tp_2 - tp_1;
eig = eig_reduced.head(n_max_subspace);
#ifdef DEBUG_EIGENSOLVER
std::cout << "A_reduced after = \n" << A_reduced << std::endl;
#endif
/* check the eigenpairs */
/* 2.3 update X, AX and, if required BX */
// from now on x, ax, bx store new x^{k+1}, ax^{k+1} and bx^{k+1}
x = v.leftCols(n_working_space) * A_reduced.leftCols(n_max_subspace); // (n, n_max_subspace)
ax = av.leftCols(n_working_space) * A_reduced.leftCols(n_max_subspace);
// x = v.leftCols(n_working_space) * A_reduced.topLeftCorner(n_working_space, n_max_subspace);
// ax = av.leftCols(n_working_space) * A_reduced.topLeftCorner(n_working_space, n_max_subspace);
if(solving_generalized){
#ifdef DEBUG_GENERALIZED
std::cout << "2.3 doing bx = bx * A_reduced" << std::endl;
#endif
// bx = v.leftCols(n_working_space) * A_reduced.topLeftCorner(n_working_space, n_max_subspace);
// ???
// how to deal with bx = bv(n, n_working_space) * A_reduced(n_working_space, n_max_subspace)
bx = bv.leftCols(n_working_space) * A_reduced.leftCols(n_max_subspace);
}
#ifdef DEBUG_LOBPCG
std::cout << "updated A_reduced = \n" << A_reduced << std::endl;
// std::cout << "updated x = \n" << x << std::endl;
// std::cout << "updated ax = \n" << ax << std::endl;
// std::cout << "--!!-- updated eig = \n" << eig << std::endl;
std::cout << "--- starts compute residuals & norms ---" << std::endl;
#endif
/* 2.4 compute residuals & norms */
/*???
here R[k] = AX[k] - X[k]eig[K]
but ax is AX[k+1]
now v, av is old [k]
x, ax is new[k+1]
*/
r = ax; // r(n, n_max_subspace), ax is new ax[k]*A_reduced
/* loop for eigenpairs */
for(int i = 0; i < n_max_subspace; ++i){
// converged vecs should not engage in computing residuals
if(activeMask(i) != ACTIVE) continue; // locked, skip
if(solving_generalized){
r.col(i) -= eig(i) * bx.col(i); // r = ax - eig*bx
} else {
r.col(i) -= eig(i) * x.col(i); // r = ax - eig*x
}
// r 矩阵第 i_eig 列的二范数。
r_norm_2(i) = r.col(i).norm(); // r_norm_2(i) = ||r_i||_2
}
#ifdef DEBUG_LOBPCG
// std::cout << "--- starts checking convergence and locking ---" << std::endl;
#endif
/* 2.5 check convergence and locking */
// new LOCKING strategy by trace minimization
#ifdef LOCKING_BY_TRACE
// or by defining constant? LOCKING_BY_TRACE = true
// i range from 0 to n_max_subspace-1, total n_max_subspace vectors
for(int i = 0; i < n_max_subspace; ++i){
// already locked
if(activeMask(i) != ACTIVE) continue;
// simply lock by norm of residuals
if(r_norm_2(i) < tol*std::sqrt(static_cast<double>(n)) && iter >0){
activeMask(i) = INACTIVE; // lock the vector
}
}
// checking overall convergence for n_eigenpairs needed
tp_1 = get_current_time();
Eigen::MatrixXd xax = x.transpose() * ax;
Eigen::MatrixXd subspace_residual = ax - x * xax;
tp_2 = get_current_time();
t_avec += tp_2 - tp_1;
double subspace_residual_norm = subspace_residual.norm() / xax.norm();
if(subspace_residual_norm < LOBPCG_CONSTANTS::tol_subspace_res){
// all vectors are locked, i.e. converged
std::cout << "> subspace residual norm of required " << n_eigenpairs << " eigenpairs converged! <" << std::endl;
std::cout << "> converged after " << iter << " iters. <" << std::endl;
evec = x; // x(n, n_max_subspace)
break; // exit main loop
}
#else // LOCKING_BY_TRACE
// i range from 0 to n_max_subspace-1, total n_max_subspace vectors
for(int i = 0; i < n_max_subspace; ++i){
// already locked
if(activeMask(i) != ACTIVE) continue;
if(r_norm_2(i) < tol*std::sqrt(static_cast<double>(n))
/*???*/
&& iter >0
){
activeMask(i) = INACTIVE; // lock the vector
#ifdef DEBUG_LOCKING
// std::cout << "eigvec " << (i) << " is locked" << std::endl;
#endif
}
if(activeMask(i) == ACTIVE){
// if not locked, update the active size
// every vec after this one should be active
#ifdef DEBUG_LOCKING
// std::cout << "activeMask.segment("<< i+1<<", "<< n_max_subspace-1-i<<") =\n" << activeMask.segment(i+1, n_max_subspace-1-i)
// <<"\nis now Eigen::VectorXi::Constant("<<n_max_subspace-1-i<<", "<< ACTIVE <<") = \n"
// << Eigen::VectorXi::Constant(n_max_subspace-1-i, ACTIVE) << std::endl;
#endif
activeMask.segment(i+1, n_max_subspace-1-i) = Eigen::VectorXi::Constant(n_max_subspace-1-i, ACTIVE);
// for(int j=i+1; j<n_max_subspace; ++j) activeMask(j) = ACTIVE;
#ifdef DEBUG_LOCKING
if(i==n_eigenpairs-2){
std::cout << "set active from " << i+1 << " to end" << std::endl;
std::cout << "eigvecs from " << (i+1) << " to " << n_max_subspace-1 << " are re-activated" << std::endl;
for(int j=i+1; j<n_max_subspace; ++j) std::cout << "active mask #"<< j << "= " << activeMask(j) << std::endl;
}
#endif
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// need to break;
// or will be set INACTIVE by later iters in segment(i+1, n_max_subspace-1-i)
break;
#ifdef DEBUG_LOCKING
// std::cout << "eigvecs from " << (i+1) << " to " << n_max_subspace-1 << " are re-activated" << std::endl;
#endif
}
}
#ifdef DEBUG_LOCKING
// print converge state
if(verbose){
for(int i=0; i<n_eigenpairs; ++i){
// std::cout << "iter# root eigenvalues residuals converged" << std::endl;
std::cout
<< std::setw(12) << iter
<< std::setw(13) << i
<< std::setw(20) << eig(i)
<< std::setw(20) << r_norm_2(i)
<< std::setw(11) << !activeMask(i) << std::endl;
}
std::cout << std::endl;
}
// std::cout << "--- checking overall convergence ---" << std::endl;
#endif
// checking overall convergence for n_eigenpairs needed
if((activeMask.head(n_eigenpairs).array() == INACTIVE).all()){
// all vectors are locked, i.e. converged
std::cout << "> all of required " << n_eigenpairs << " eigenpairs converged! <" << std::endl;
std::cout << "> converged after " << iter << " iters. <" << std::endl;
evec = x; // x(n, n_max_subspace)
break; // exit main loop
}
#endif //LOCKING_BY_TRACE
/* 2.6 check active eigenvalues and update blockvectors X, P, W */
/* 2.6.1 compute the number of active eigenvalues */
n_active = activeMask.count(); // count number of active eigenvalues
int index_x_active = n_max_subspace-n_active;
// index_p = n_max_subspace
index_w = n_max_subspace+n_active;
#ifdef DEBUG_LOBPCG
std::cout << "number of active eigenvalues: " << n_active << std::endl;
#endif
/* x can be partitioned into [X_locked | X_active] and we care the latter part: X_active*/
/* 2.6.2 compute the new P and AP blockvector,
by computing the coefficients u_p and then orthonalizing to u_x */
/* [x p w]*/
/* coefficients of p can be computed as follows:
!!! notice that we only deal with active part of X, and thus W and P of size(n, n_active)
0. we get coefficients from A_reduced(n_working_space, n_working_space)
A_reduced [ c_x
c_p
c_w ]
1. x^{k+1} = x^k * c_x + p^k * c_p + w^k * c_w
2. p^k = x^{k+1} - x^k = (x^k - I) * c_x + w^k * c_w + p^k * c_p
3. size of p: (n, n_active)
4. we get active x^k here from x(:, n_max_subspace-n_active to n_max_subspace-1)
corresponding coeff block(n_max_subspace-n_active, n_max_subspace-n_active,n_active,n_active)
*/
#ifdef DEBUG_COEFF
std::cout << "--- start computing the coefficients of p ---" << std::endl;
#endif
// -- compute the coefficients of p
/* coeff consists of c_x, c_p, c_w */
Eigen::MatrixXd coeff = A_reduced.topLeftCorner(n_working_space, n_max_subspace);
#ifdef DEBUG_COEFF
std::cout << "coeff'coeff = \n" << coeff.transpose() * coeff << std::endl;
#endif
// in c_p: c_x - I where x is active, i.e. n_max_subspace-n_active to n_max_subspace-1
// auto c_p = coeff.block(n_max_subspace-n_active, n_max_subspace-n_active,n_active,n_active);
// c_p -= Eigen::MatrixXd::Identity(n_active, n_active);
/* do not change coeff of x, but change coeff of p itself
because coeff_p needs to be ortho against original c_x */
Eigen::MatrixXd coeff_p = coeff.middleCols(index_x_active,n_active);
// for(int i=0; i<n_active; ++i){coeff_p(n_max_subspace-n_active+i, i) -= 1;}
auto c_active = coeff_p.middleRows(index_x_active, n_active);
#ifdef DEBUG_COEFF
std::cout << "coeff = \n" << coeff << std::endl;
std::cout << "coeff_p = \n" << coeff_p << std::endl;
// std::cout << "c_active = \n" << c_active << std::endl;
#endif
c_active -= Eigen::MatrixXd::Identity(n_active, n_active);
#ifdef DEBUG_COEFF
// std::cout << "c_active = \n" << c_active << std::endl;
std::cout << "coeff_p-I = \n" << coeff_p << std::endl;
#endif
// ortho coeff p(n_working_space, n_active) against coeff x(n_working_space, n_max_subspace)
ortho_against_y(n_working_space, n_max_subspace, n_active, coeff_p, coeff);
#ifdef DEBUG_COEFF
// std::cout << "coeff = \n" << coeff << std::endl;
std::cout << "coeff = \n" << coeff << std::endl;
std::cout << "coeff_p-ortho = \n" << coeff_p << std::endl;
std::cout << "coeff_p-ortho overlap u_p'u_p = \n" << coeff_p.transpose() * coeff_p << std::endl;
std::cout << "coeff_p-ortho overlap u_x'u_p = \n" << coeff.transpose() * coeff_p << std::endl;
#endif
// -- end of computing the coefficients of p
/* p(n, n_active) = v(n, n_working_space) * coeff_p(n_working_space, n_active)
where v(n, n_working_space) contains old [x p w]
*/
#ifdef DEBUG_COEFF
// std::cout << "v size: " << v.rows() << " x " << v.cols() << std::endl;
// std::cout << "coeff_p size: " << coeff_p.rows() << " x " << coeff_p.cols() << std::endl;
#endif
// iter#0, v = [x w], n_working_space = 2*n_max_subspace
// else v = [x p w], n_working_space = n_max_subspace + 2*n_active
// p(n, n_active) = x(n, n_working_space) * coeff_p(n_working_space, n_active)
p = v.leftCols(n_working_space) * coeff_p;
// ap = v.leftCols(n_working_space) * coeff_p;
// !!!!!!!!!!!!!!!!!!! av.leftCols, not v!!!!!
ap = av.leftCols(n_working_space) * coeff_p;
/*???
how to maintain bv
*/
if(solving_generalized){
#ifdef DEBUG_GENERALIZED
std::cout << "updating bp = bv * A_reduced" << std::endl;
#endif
bp = bv.leftCols(n_working_space) * coeff_p;
}
/* now that we have new p, ap and bp, we shall put them in v */
/* v(n, n_working_space) [x(n, n_max_subspace) p(n, n_active) w(n, n_active)]*/
/* update p in v[x p w] */
v.middleCols(n_max_subspace, n_active) = p;
av.middleCols(n_max_subspace, n_active) = ap;
/* update x in v[x p w] */
v.leftCols(n_max_subspace) = x;
av.leftCols(n_max_subspace) = ax;
if(solving_generalized){
bv.middleCols(n_max_subspace, n_active) = bp;
bv.leftCols(n_max_subspace) = bx;
}
#ifdef DEBUG_UPDATE
std::cout << "x, p already updated, w to be done" << std::endl;
std::cout << "updated v[x p w] = \n" << v << std::endl;
std::cout << "updated av[x p w] = \n" << av << std::endl;
std::cout << "updated v'av[x p w] = \n" << v.transpose() * av << std::endl;
#endif
// -- now p, ap, bp contains new values of step k+1
/* 2.6.4 compute the preconditioned residuals W */
/* only residuals of active x will be taken into W */
Eigen::MatrixXd r_active = r.rightCols(n_active);
w = r_active; // resize w to (n, n_active)
precnd(n, n_active, r_active, w, shift - eig(0)); // w(n, n_active) = t * r(n, n_active)
// eigen will change w size if needed during precnd
/* 2.7.1 orthogonalize W to X, P; and then orthonormalize it */
/* w size(n, n_active), x size(n, n_max_subspace), p size(n, n_active)*/
const Eigen::MatrixXd xp = v.leftCols(n_max_subspace + n_active);
tp_1 = get_current_time();
if(solving_generalized){ // get orthogonalized w and bw
// const Eigen::MatrixXd b_xp = bv.leftCols(n_max_subspace + n_active);
// Eigen::MatrixXd b_xp(n, n_max_subspace + n_active);
// b_xp << bx, bp;
Eigen::MatrixXd b_xp = bv.leftCols(n_max_subspace + n_active);
b_ortho_against_y(n, n_max_subspace + n_active, n_active, w, xp, b_xp); // b-ortho w to [x p]
bw.resize(n,n_active);
bvec(n, n_active, w, bw); // bw = b*w
b_ortho(n, n_active, w, bw); // b-ortho
bv.middleCols(index_w, n_active) = bw;
} else {
ortho_against_y(n, n_max_subspace+n_active, n_active, w, xp);// ortho w to [x p]
}
tp_2 = get_current_time(); // t_ortho
t_ortho += tp_2 - tp_1;
/* 2.7 update corresponding blockvectors V from X, P, W*/
/* -- these will be used in the next iteration for constructing
reduced matrix A_reduced = v'av for Rayleigh-Ritz */
// if(solving_generalized) bv.middleCols(n_max_subspace, n_active) = bp;
/* w */
v.middleCols(index_w, n_active) = w;
// av.middleCols(index_w, n_active) = aw; NEXT ITER
#ifdef DEBUG_UPDATE
// std::cout << "updated v[x p w_new] = \n" << v << std::endl;
#endif
if(iter>=max_iter-1){
std::cerr << "LOBPCG did not converge in " << max_iter << " iterations" << std::endl;
return LOBPCG_CONSTANTS::fail;
}
} // end - main loop for
// --- 3. clean up ---
/* verbose output */
tp_end = get_current_time();
t_total = tp_end - tp_start;
std::cout << std::left;
std::cout << std::setw(35) << "LOBPCG total time: " << t_total.count() << std::endl;
std::cout << std::setw(35) << "LOBPCG time for avec: " << t_avec.count() << std::endl;
std::cout << std::setw(35) << "LOBPCG time for ortho: " << t_ortho.count() << std::endl;
std::cout << std::setw(35) << "LOBPCG time for Rayleigh-Ritz: " << t_solveRR.count() << std::endl;
return LOBPCG_CONSTANTS::success;
} // end - lobpcg_solve