-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMakefile
768 lines (645 loc) · 35.4 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
SHELL=/bin/bash -O expand_aliases
# DATA_PATH=/Users/type/Code/glia_playing_atari/data/
# DATA_PATH=/Users/qualia/Code/glia_playing_atari/data
DATA_PATH=/home/stitch/Code/glia_playing_atari/data/
# ----------------------------------------------------------------------------
# Tests - should always run fine
digits_test:
glia_digits.py VAE --glia=True --num_epochs=150 --use_gpu=False --lr=0.004 --lr_vae=0.01 --debug=True --seed_value=None --save=$(DATA_PATH)/digits_test
fashion_test:
glia_fashion.py VAE --glia=True --num_epochs=150 --use_gpu=False --lr=0.008 --lr_vae=0.01 --debug=True --seed_value=None --save=$(DATA_PATH)/fashion_test
# ----------------------------------------------------------------------------
xor_exp1:
glia_xor.py --glia=False --debug=True
xor_exp2:
glia_xor.py --glia=True --debug=True
# ----------------------------------------------------------------------------
# low N epoch. SOA doesn't matter
digits_exp1:
glia_digits.py --glia=False --epochs=3 --progress=True
digits_exp2:
glia_digits.py --glia=True --epochs=10 --progress=True
# Change to ELU non lin
# c512575b734cca2c23cd8854ea6dfb6fbb825196
# Acc: 0.53, but started declining by epoch 15 or so
digits_exp3:
glia_digits.py --glia=True --epochs=100 --progress=True --lr=0.1
# Acc: 0.49 (linear improvements)
digits_exp4:
glia_digits.py --glia=True --epochs=100 --progress=True --lr=0.01
# Back to Tanh
# 7d649590227b657d2ab2ca3902ad2621ed158c5a
# Acc: 0.59 (linear improvements)
digits_exp5:
glia_digits.py --glia=True --epochs=100 --progress=True --lr=0.01
# Increase epochs
# Acc 86
digits_exp6:
glia_digits.py --glia=True --epochs=200 --progress=True --lr=0.01
# Increase epochs
# Acc: 88.4 (linear improvement, until that last 50 or so. Stuck at ~0.88 after)
digits_exp7:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.01
# Increase lr, slightly
# Learning happens much earlier on now. Seems to be progressing more
# rapidly.
# About 100 epocs in learning may have peaked near 0.77. Acc starting to
# decline and have higher variance after that. Volatility suggests lr to high?
# How long should I let this go before calling it. Acc dropped below 50.
# Stopped early.
digits_exp8:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.015
# Bump lr up a little (in between 7 and 8)
# Learning stalled at 0.49. I don't get this at all!
digits_exp9:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.0125
# Re-run 7, using ADAM instead of SGD.
# 4ea82d4730139bd7c8d033ffc6325868009d46af
# First test iter w/ ADAM already at 0.53!
# But variance became high-er-ish. ~0.7 250 epochs in
digits_exp10:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.01
# Decrease lr
# Acc: 0.93, stable linear though slowing by ~250.
digits_exp11:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.005
# exp11 w/ cuda
digits_exp12:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.005 --use_gpu=True
# ----------------------------------------------------------------------------
# Perceptron exps/testing
# (using exp11 w/ cuda params)
#
# d36e5372e6252269ecd45a38abc80bd57c2f0e7f
# Neurons
digits_exp13:
glia_digits.py --glia=False --epochs=300 --progress=True --lr=0.005 --use_gpu=True --device_num=0 --conv=False
# Glia (seg faults on my laptop)
# Using: a2f1e10ee6793a28d03679e3ec39eaec3c107520
# Learning to 70% Acc is fast (Epoch 2); 78% by Epoch 3;
# Peaked at Epoch 50 89%.
digits_exp14:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.005 --use_gpu=True --device_num=0 --conv=False --debug=False
# ----------------------------------------------------------------------------
# VAE testing
# CPU
digits_exp15:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.005 --use_gpu=False --device_num=0 --debug=True | tee $(DATA_PATH)/digits_exp15.log
# w/ glia
digits_exp16:
glia_digits.py --glia=True --epochs=300 --progress=True --lr=0.01 --use_gpu=True --device_num=0 --debug=False | tee $(DATA_PATH)/digits_exp16.log
# w/ neurons
digits_exp17:
glia_digits.py --glia=False --epochs=300 --progress=True --lr=0.005 --use_gpu=True --device_num=0 --debug=False | tee $(DATA_PATH)/digits_exp17.log
# ----------------------------------------------------------------------------
# Hyper params sweep 1 for AGN
# Setup to run on Churchlands
# exp1 ran fine, but not great results
tune_digits_exp1:
tune_digits.py tune_1 data/exp1/ --num_samples=50 --max_iterations=20 --use_gpu=True
# tweaked config
# up samples
# 7dae017059c9b976da462d55cd85aa579b33bfaa
tune_digits_exp2:
tune_digits.py tune_1 data/exp2/ --num_samples=100 --max_iterations=20 --use_gpu=True
# Froze VAE lr
# fa11ee7a53df05b52167b859370a0824b7de6ff2
tune_digits_exp3:
tune_digits.py tune_1 data/exp3/ --num_samples=200 --max_iterations=20 --use_gpu=True
# Moved to py36 to get tensoprboard working. Can't easily vis the above.
# Had to parse logs. Booos. Rerun exp3, now w/ TB?
# fa11ee7a53df05b52167b859370a0824b7de6ff2
tune_digits_exp4:
tune_digits.py tune_1 data/exp4/ --num_samples=200 --max_iterations=20 --use_gpu=True
# 12-10-2018
# Prev tunes were totally usefless. Somehow I forked the wrong code so none
# of the hyperparams that were suppose to be run, were. Only lr was sampled
# in any of the above. That error is now bieng fixed....
# e10df71dfdf3ae020e72384e566fbd26669c034b
#
# For laptop:
tune_digits_exp5:
tune_digits.py tune_1 data/exp5/ --num_samples=2 --max_iterations=2 --use_gpu=False
# Test VAEGather
# e10df71dfdf3ae020e72384e566fbd26669c034b
tune_digits_exp6:
tune_digits.py tune_1 data/exp6/ --num_samples=100 --max_iterations=20 --use_gpu=True
# Test LinearGather
# 8d54eb5c4385c0c7d5bd33db84b83c431b19c36a
# Errored: debug later.
tune_digits_exp7:
tune_digits.py tune_1 data/exp7/ --num_samples=100 --max_iterations=20 --use_gpu=True
# Test VAESlide
# 5e3286b12b87d26615c04a966c48f5476c8531f0
# Notinhg above 45%. Best models had < 5 layers, used ELU or Tanh
tune_digits_exp8:
tune_digits.py tune_1 data/exp8/ --num_samples=100 --max_iterations=20 --use_gpu=True
# Test VAESlide
# Repeat exp8 but sample inline w/ those results,
# and search the epsilon param in ADAM.
# num_hidden 1-5
# lr 0.005-0.1
# Fix ELU
# epsilon 1e-8 - .1 (Huge per tensorflow rec)
# dcdf500fe7609056b80efab8f16bcfec83615d37
tune_digits_exp9:
tune_digits.py tune_1 data/exp9/ --num_samples=200 --max_iterations=20 --use_gpu=True
# VAESpread: search num_hidden and lr
# f09b166ba5640613d4b63b0a705e1b61ae98e555
# This gave a bump in final ACC to ~0.51, the largest increase for HP so far.
# Best model: lr=0.0097, num_hidden=2
tune_digits_exp10:
tune_digits.py tune_1 data/exp10/ --num_samples=200 --max_iterations=20 --use_gpu=True
# ---------------------------------------------------------------------------
# 5-6-2019
# 7dd363c757700feb81647b4aa213b574401d9e66
# Glia comp is not analogoues to point source intiation followed by a circular
# Ca traveling wave, than eventually gets summarized/decoded to digits.
digits_exp18:
glia_digits.py VAE --glia=False --epochs=10 --progress=True --use_gpu=True | tee $(DATA_PATH)/digits_exp18.log
# SUM: Training peaked at 87.8% - a (huge) new record. Traveling waves are the way to go.
# NEXT: Explore epochs, lr, Explore a Spread (w/ gather)?
digits_exp19:
glia_digits.py VAE --glia=True --epochs=500 --progress=True --use_gpu=True | tee $(DATA_PATH)/digits_exp19.log
# ---------------------------------------------------------------------------
# 5-7-2019
# NOTE: EXPs 20-24 use a GPU, AND the device is set manually so each can be
# run in parallel.
# Repeat of 19, saving model this time
digits_exp20:
glia_digits.py VAE --glia=True --epochs=1000 --progress=True --use_gpu=True --device_num=0 --save=$(DATA_PATH)/digits_exp20 | tee $(DATA_PATH)/digits_exp20.log
# Longer version of 19
digits_exp21:
glia_digits.py VAE --glia=True --epochs=1000 --progress=True --use_gpu=True --device_num=0 --save=$(DATA_PATH)/digits_exp21 | tee $(DATA_PATH)/digits_exp21.log
# Longer version of 19, lr=0.02
digits_exp22:
glia_digits.py VAE --glia=True --epochs=1000 --lr=0.02 --progress=True --use_gpu=True --device_num=1 --save=$(DATA_PATH)/digits_exp22 | tee $(DATA_PATH)/digits_exp22.log
# Test exp! Try a growing the shrinking traveling wave
digits_exp23:
glia_digits.py VAE --glia=True --epochs=10 --lr=0.01 --wave_size=24 --debug=True --device_num=1 --progress=True --use_gpu=False
# Try a growing the shrinking traveling wave
digits_exp24:
glia_digits.py VAE --glia=True --epochs=1000 --lr=0.01 --wave_size=40 --debug=True --device_num=2 --progress=True --use_gpu=True --save=$(DATA_PATH)/digits_exp24 | tee $(DATA_PATH)/digits_exp24.log
# Try a growing the shrinking traveling wave: lr=0.02
digits_exp25:
glia_digits.py VAE --glia=True --epochs=1000 --lr=0.02 --wave_size=40 --debug=True --device_num=2 --progress=True --use_gpu=True --save=$(DATA_PATH)/digits_exp25 | tee $(DATA_PATH)/digits_exp25.log
# ---------------------------------------------------------------------------
# 8-20-2019
#
# Fixed in-place errors
# 302f2eb3004371752e1d411e69c834fa9bec1841
digits_rp_test:
glia_digits.py RP --random_projection=GP --glia=True --epochs=10 --progress=True --use_gpu=False
# Try two RP exps, one for each projection type
# I'm getting an error for numpy use w/ GPU on.
# To get result now, I'm swtiching to CPU. Revisit later!
#
# GP
# SUM: Test accuracy was chance. ~12 %
digits_exp26:
glia_digits.py RP --glia=True --random_projection=GP --epochs=500 --progress=True --use_gpu=False | tee $(DATA_PATH)/digits_exp126.log
# SP
# SUM: Test accuracy was change. ~52 %
digits_exp27:
glia_digits.py RP --glia=True --random_projection=SP --epochs=500 --progress=True --use_gpu=False | tee $(DATA_PATH)/digits_exp127.log
# VAE (Re-run 19; consistency check)
# SUM: Accuarcy was 87% (the high so far w/ glia)
digits_exp28:
glia_digits.py VAE --glia=True --random_projection=GP --epochs=500 --progress=True --use_gpu=False | tee $(DATA_PATH)/digits_exp128.log
# ---------------------------------------------------------------------------
# 8-21-2019
# SP w/ neuronal learning
# SUM: accuracy was ~75% (Glia have ~20% to go)
digits_exp129:
glia_digits.py RP --glia=False --random_projection=SP --epochs=500 --progress=True --use_gpu=False | tee $(DATA_PATH)/digits_exp129.log
# GP w/ neuronal learning
# SUM: accuracy was ~75%; (Meanwhile glia were at chance)
digits_exp130:
glia_digits.py RP --glia=False --random_projection=GP --epochs=500 --progress=True --use_gpu=False | tee $(DATA_PATH)/digits_exp130.log
# VAE w/ neuronal learning
# SUM: accuracy was 95.47 % (glia have ~10% to go; try some metaparam opt?).
digits_exp131:
glia_digits.py VAE --glia=False --epochs=500 --progress=True --use_gpu=False | tee $(DATA_PATH)/digits_exp131.log
# ---------------------------------------------------------------------------
# 8-22-2019
# e27907b58c2d56568d5758da1b3abdfd1a78ed20
# NOTE: The command line API changed from the above.
# --epoch -> --num_epoch
# --use_cuda -> --use_gpu
# Tune some glia nets w/ random search
# Note: the search has changed from the above in two key ways. Because it is
# buggy in bad way, Ray was dropped. Also, some of the API changed to work
# w/ a broader range of HP.
test_tune_digits:
tune_digits.py random $(DATA_PATH)/test_tune_digits run_VAE \
--num_samples=2 --seed_value=1 \
--num_epochs=5 --glia=False --use_gpu=False --lr='(0.001, 0.1)' --lr_vae='(0.01, 0.1)'
# Tune lrs.
# ANN
tune_digits11:
tune_digits.py random $(DATA_PATH)/tune_digits11 run_VAE \
--num_samples=100 --seed_value=1 \
--num_epochs=100 --glia=False --use_gpu=True --lr='(0.000001, 0.1)' --lr_vae='(0.000001, 0.1)'
# Glia - VAE
tune_digits12:
tune_digits.py random $(DATA_PATH)/tune_digits12 run_VAE \
--num_samples=100 --seed_value=1 \
--num_epochs=100 --glia=True --use_gpu=True --lr='(0.000001, 0.1)' --lr_vae='(0.000001, 0.1)'
# Glia - GP
tune_digits13:
tune_digits.py random $(DATA_PATH)/tune_digits13 run_RP \
--num_samples=100 --seed_value=1 \
--num_epochs=100 --glia=True --use_gpu=True --lr='(0.000001, 0.1)' --random_projection=GP
# Glia - SP
tune_digits14:
tune_digits.py random $(DATA_PATH)/tune_digits14 run_RP \
--num_samples=100 --seed_value=1 \
--num_epochs=100 --glia=True --use_gpu=True --lr='(0.000001, 0.1)' --random_projection=SP
# ---------------------------------------------------------------------------
# 8-29-2019
#
# Search z and lr (fix lr_VAE)
# 898b8ba9e971cc840dd03bac6f2447d2eb4841fa
# SUM: When z=24 or 40 all simulations gave numerically identical results.
# This was true with and between 15 and 16. Something is quite wrong.
# Try in ANN mode next. Is the problem the perceptron or elsewhere?
# Glia - VAE
tune_digits15:
tune_digits.py random $(DATA_PATH)/tune_digits15_z12 run_VAE \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --lr_vae=0.01 --z_features=12
tune_digits.py random $(DATA_PATH)/tune_digits15_z16 run_VAE \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --lr_vae=0.01 --z_features=16
tune_digits.py random $(DATA_PATH)/tune_digits15_z20 run_VAE \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --lr_vae=0.01 --z_features=20
tune_digits.py random $(DATA_PATH)/tune_digits15_z24 run_VAE \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --lr_vae=0.01 --z_features=24
tune_digits.py random $(DATA_PATH)/tune_digits15_z40 run_VAE \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --lr_vae=0.01 --z_features=40
# Glia - SP
tune_digits16:
tune_digits.py random $(DATA_PATH)/tune_digits16_z12 run_RP \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --random_projection=SP --z_features=12
tune_digits.py random $(DATA_PATH)/tune_digits16_z16 run_RP \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --random_projection=SP --z_features=16
tune_digits.py random $(DATA_PATH)/tune_digits16_z20 run_RP \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --random_projection=SP --z_features=20
tune_digits.py random $(DATA_PATH)/tune_digits16_z24 run_RP \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --random_projection=SP --z_features=24
tune_digits.py random $(DATA_PATH)/tune_digits16_z40 run_RP \
--num_samples=100 --seed_value=1 \
--num_epochs=25 --glia=True --use_gpu=True --lr='(0.0001, 0.1)' --random_projection=SP --z_features=40
# ---------------------------------------------------------------------------
# 9-4-2019
# 9ba8fd48cdca494659eed215c26fa4c73f160f1a
#
# Control exps for 15/16
# Run z=40 but using ANN mode. Are the sims still identical?
#
# SUM: Results look fine. The bug--if there is one--is in the GliaNet()
tune_digits17:
tune_digits.py random $(DATA_PATH)/tune_digits17_a run_VAE \
--num_samples=16 --seed_value=1 \
--num_epochs=25 --glia=False --use_gpu=True --lr='(0.0001, 0.1)' --lr_vae=0.01 --z_features=40 | tee $(DATA_PATH)/tune_digits17_b.log
tune_digits.py random $(DATA_PATH)/tune_digits17_b run_RP \
--num_samples=16 --seed_value=1 \
--num_epochs=25 --glia=False --use_gpu=True --lr='(0.0001, 0.1)' --random_projection=SP --z_features=40 | tee $(DATA_PATH)/tune_digits17_b.log
# ---------------------------------------------------------------------------
# 9-4-2019
# 4e6f7ed4d4431bb2874e9bca3039dbeddd14d3a2
#
# Train a VAE only. Use it to train glia/neurons. This should improve final
# performance of both models?
digits_exp134:
glia_digits.py VAE_only --num_epochs=100 --z_features=20 --progress=True --use_gpu=True --save=$(DATA_PATH)/digits_exp134_VAE_only | tee $(DATA_PATH)/digits_exp134.log
# Note: device_num set for the next three exps
# SUM: Correct: 78.67
digits_exp135:
glia_digits.py VAE --glia=True --num_epochs=100 --vae_path=$(DATA_PATH)/digits_exp134_VAE_only.pytorch --progress=True --use_gpu=True --device_num=1 --save=$(DATA_PATH)/digits_exp135 | tee $(DATA_PATH)/digits_exp135.log
# SUM: Correct: 93.73
digits_exp136:
glia_digits.py VAE --glia=False --num_epochs=100 --vae_path=$(DATA_PATH)/digits_exp134_VAE_only.pytorch --progress=True --use_gpu=True --device_num=2 --save=$(DATA_PATH)/digits_exp136 | tee $(DATA_PATH)/digits_exp136.log
# Glia nets have 5x the layers (for z=20). Up the training time to compensate.
# SUM: Correct: 80.96
digits_exp137:
glia_digits.py VAE --glia=True --num_epochs=500 --vae_path=$(DATA_PATH)/digits_exp134_VAE_only.pytorch --progress=True --use_gpu=True --device_num=3 --save=$(DATA_PATH)/digits_exp137 | tee $(DATA_PATH)/digits_exp137.log
# -
# cc48ca7fa3ab575ada3deb6b8d9e0a24ee6548ac
# Try a faster lr? (default is 0.005)
# SUM: poor progress at the start.
# SUM: stopped after 10 iterations; no learning progress.
digits_exp138:
glia_digits.py VAE --glia=True --num_epochs=100 --lr=0.01 --vae_path=$(DATA_PATH)/digits_exp134_VAE_only.pytorch --progress=True --use_gpu=True --device_num=1 --save=$(DATA_PATH)/digits_exp138 | tee $(DATA_PATH)/digits_exp138.log
# Slower, lr=0.001 (default is 0.005)
# SUM: Correct: 75.45
digits_exp139:
glia_digits.py VAE --glia=True --num_epochs=100 --lr=0.001 --vae_path=$(DATA_PATH)/digits_exp134_VAE_only.pytorch --progress=True --use_gpu=True --device_num=1 --save=$(DATA_PATH)/digits_exp139 | tee $(DATA_PATH)/digits_exp139.log
# ---------------------------------------------------------------------------
# 9-5-2019
#
# Commented out the slide layer in GliaNet(); Otherwise it is a rep of 135.
# 5288667057166ec79faa73d3c29c173313937545
#
# SUM: Correct: 73.73
digits_exp140:
glia_digits.py VAE --glia=True --num_epochs=100 --vae_path=$(DATA_PATH)/digits_exp134_VAE_only.pytorch --progress=True --use_gpu=True --device_num=1 --save=$(DATA_PATH)/digits_exp140 | tee $(DATA_PATH)/digits_exp140.log
# -
# 15490ee1f3357d3d730947454c81a23aa69e78b9
# (Turned Slide back on)
# Increase VAE only training. N = 250 (up from 100).
digits_exp141:
glia_digits.py VAE_only --num_epochs=250 --z_features=20 --progress=True --use_gpu=True --save=$(DATA_PATH)/digits_exp141_VAE_only | tee $(DATA_PATH)/digits_exp141.log
# Run w/ VAE from 141; otherwise this is a rep of 135.
# SUM: Correct: 77% (peak of 81%); Helps?
# About training epoch 75 saw a peak of 81% correct. Should I be stopping
# sooner?
digits_exp142:
glia_digits.py VAE --glia=True --num_epochs=100 --vae_path=$(DATA_PATH)/digits_exp141_VAE_only.pytorch --progress=True --use_gpu=True --device_num=1 --save=$(DATA_PATH)/digits_exp142 | tee $(DATA_PATH)/digits_exp142.log
# Run w/ larger batch_size = 256 (up from 128); VAE is 134.
# SUM: Correct: 77.3; Larger batch made no difference
digits_exp143:
glia_digits.py VAE --glia=True --num_epochs=100 --vae_path=$(DATA_PATH)/digits_exp134_VAE_only.pytorch --batch_size=256 --test_batch_size=256 --progress=True --use_gpu=True --device_num=2 --save=$(DATA_PATH)/digits_exp143 | tee $(DATA_PATH)/digits_exp143.log
# -
# Increase VAE only training. N = 500 (up from 250 and 100).
digits_exp144:
glia_digits.py VAE_only --num_epochs=500 --z_features=20 --progress=True --use_gpu=True --save=$(DATA_PATH)/digits_exp144_VAE_only | tee $(DATA_PATH)/digits_exp144.log
# Run w/ VAE from 141; otherwise this is a rep of 135.
# SUM: Correct: 79.76; Small increase. Tweak lr using ths VAE?
digits_exp145:
glia_digits.py VAE --glia=True --num_epochs=100 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --progress=True --use_gpu=True --device_num=1 --save=$(DATA_PATH)/digits_exp145 | tee $(DATA_PATH)/digits_exp145.log
# -
# 9-5-2019
# Small lr tweaks
# Baseline: lr=0.005
# 790554c028ab153587a510d0bb3b9b41b571e080
# SUM 146-150: lr=0.001-0.005 looks like the best range (by a small margin).
# lr=0.0025
# SUM: Correct: 78.41
digits_exp146:
glia_digits.py VAE --glia=True --num_epochs=100 --lr=0.0025 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --progress=True --use_gpu=True --device_num=0 --save=$(DATA_PATH)/digits_exp146 | tee $(DATA_PATH)/digits_exp146.log
# lr=0.0075
# SUM: Correct: ~10%
digits_exp147:
glia_digits.py VAE --glia=True --num_epochs=100 --lr=0.0075 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --progress=True --use_gpu=True --device_num=1 --save=$(DATA_PATH)/digits_exp147 | tee $(DATA_PATH)/digits_exp147.log
# lr=0.0015
# SUM: Correct: 79.64
digits_exp148:
glia_digits.py VAE --glia=True --num_epochs=100 --lr=0.0015 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --progress=True --use_gpu=True --device_num=2 --save=$(DATA_PATH)/digits_exp148 | tee $(DATA_PATH)/digits_exp148.log
# lr=0.0005
# SUM: Correct: 75.46
digits_exp149:
glia_digits.py VAE --glia=True --num_epochs=100 --lr=0.0005 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --progress=True --use_gpu=True --device_num=3 --save=$(DATA_PATH)/digits_exp149 | tee $(DATA_PATH)/digits_exp149.log
# lr=0.001
# SUM: Correct: 76.56
digits_exp150:
glia_digits.py VAE --glia=True --num_epochs=100 --lr=0.001 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --progress=True --use_gpu=True --device_num=0 --save=$(DATA_PATH)/digits_exp150 | tee $(DATA_PATH)/digits_exp150.log
# ---------------------------------------------------------------------------
# 9-7-2019
# CCN poster runs. N=20 runs. No fixed seed.
#
# VAE - train both
# Glia
digits_exp151:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --num_epochs=150 --use_gpu=True --lr=0.004 --lr_vae=0.01 --seed_value=None --save=$(DATA_PATH)/digits_exp151_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
digits_exp152:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=False --num_epochs=150 --use_gpu=True --lr=0.004 --lr_vae=0.01 --seed_value=None --save=$(DATA_PATH)/digits_exp152_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# VAE - train ANN/AAN. Use pretrained VAE
digits_exp153:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp153_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
digits_exp154:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=False --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp154_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# -
# Random projection
# Glia
digits_exp155:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py RP --glia=True --num_epochs=150 --random_projection=SP --use_gpu=True --lr=0.004 --seed_value=None --save=$(DATA_PATH)/digits_exp155_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
digits_exp156:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py RP --glia=False --num_epochs=150 --random_projection=SP --use_gpu=True --lr=0.004 --seed_value=None --save=$(DATA_PATH)/digits_exp156_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# ---------------------------------------------------------------------------
# 9-9-2019
# 85d2f53efc7fedb62dc83abc4aaabfdc69746f51
# CCN XOR runs
xor_exp3:
parallel -j 20 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_xor.py --glia=False --seed_value=None --save=$(DATA_PATH)/xor_exp3_{1}' ::: {1..20}
xor_exp4:
parallel -j 20 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_xor.py --glia=False --seed_value=None --save=$(DATA_PATH)/xor_exp4_{1}' ::: {1..20}
# ---------------------------------------------------------------------------
# 10-8-2019
# d5bbf16f235d261adee7326dcb2176685784007d
# Leak and digits
#
# SUM: there to-chance drop in between 0.2 and 0.5. Need more resolution.
digits_exp157:
# sigma: 0.1
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --leak=True --sigma=0.1 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp157_s01_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# sigma: 0.2
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --leak=True --sigma=0.2 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp157_s02_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --leak=True --sigma=0.5 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp157_s05_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --leak=True --sigma=0.6 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp157_s06_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# ---------------------------------------------------------------------------
# 10-10-2019
# d5bbf16f235d261adee7326dcb2176685784007d
# Expanding run from 157
#
digits_exp158:
# sigma: 0.3
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --leak=True --sigma=0.3 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp158_s03_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# sigma: 0.35
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --leak=True --sigma=0.35 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp158_s035_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# sigma: 0.4
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --leak=True --sigma=0.4 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp158_s04_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# ---------------------------------------------------------------------------
# 10-20-2019
# Added a new Fashion-able experiment.
#
# As a first test try both neurons and glia (w/ VAE) using params from MINST
# digits.
#
# SUM: Performance good on both. Approaching digits
# Glia
fashion_exp1:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_fashion.py VAE --glia=True --num_epochs=150 --use_gpu=True --lr=0.004 --lr_vae=0.01 --seed_value=None --save=$(DATA_PATH)/fashion_exp1{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
fashion_exp2:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_fashion.py VAE --glia=False --num_epochs=150 --use_gpu=True --lr=0.004 --lr_vae=0.01 --seed_value=None --save=$(DATA_PATH)/fashion_exp2_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# ---------------------------------------------------------------------------
# 10/24/2019
# Random projection
#
# SUM: Performance good on both. Approaching digits
# Glia
fashion_exp3:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_fashion.py RP --glia=True --num_epochs=150 --random_projection=SP --use_gpu=True --lr=0.004 --seed_value=None --save=$(DATA_PATH)/fashion_exp3_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
fashion_exp4:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_fashion.py RP --glia=False --num_epochs=150 --random_projection=SP --use_gpu=True --lr=0.004 --seed_value=None --save=$(DATA_PATH)/fashion_exp4_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# ---------------------------------------------------------------------------
# 10/28/2019
# Try some noise connections (on digit learning)
# e09448ddcc631f87f290c9858fb6c7bf50f330ff
#
# SUM: Noise at 0.1 and 0.2 started to decrease avg accuracy, but only slightly.
# Do another run with more noise.
digits_exp159:
# sigma: 0.1
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.01 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp159_s01_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# sigma: 0.2
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.05 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp159_s05_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.1 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp159_s1_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.2 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp159_s2_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Try some dropped connections (on digit learning)
# e09448ddcc631f87f290c9858fb6c7bf50f330ff
# SUM:
digits_exp160:
# p: 0.1
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --drop=True --p=0.01 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp160_p01_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# p: 0.2
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --drop=True --p=0.05 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp160_p05_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --drop=True --p=0.1 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp160_p1_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --drop=True --p=0.2 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp160_p2_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# ---------------------------------------------------------------------------
# 10/30/2019
# fe8d4c6618ab7e68e3edb597b69d114fa97b9dfb
# expansion of exp159 -- more noise!
#
# SUM:
digits_exp161:
# sigma: 0.1
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.3 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp161_s3_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# sigma: 0.2
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.4 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp161_4_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.5 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp161_s5_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.6 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp161_s6_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.7 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp161_s7_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --noise=True --sigma=0.8 --num_epochs=150 --use_gpu=True --lr=0.004 --vae_path=$(DATA_PATH)/digits_exp144_VAE_only.pytorch --seed_value=None --save=$(DATA_PATH)/digits_exp161_s8_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# ---------------------------------------------------------------------------
# 5/18/21
# f5a1221
#
# In a recent commit (f5a1221) I added loging of loss and acc, by epoch. Rerrun
# the main results to get these curves (for neuralIPS)
# ---
# Org exp codes:
# digits: 151-152 VAE
# digits: 155-156 RP
# Glia
digits_exp162:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=True --num_epochs=150 --use_gpu=True --lr=0.004 --lr_vae=0.01 --seed_value=None --save=$(DATA_PATH)/digits_exp162_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
digits_exp163:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py VAE --glia=False --num_epochs=150 --use_gpu=True --lr=0.004 --lr_vae=0.01 --seed_value=None --save=$(DATA_PATH)/digits_exp163_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Random projection
# Glia
digits_exp164:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py RP --glia=True --num_epochs=150 --random_projection=SP --use_gpu=True --lr=0.004 --seed_value=None --save=$(DATA_PATH)/digits_exp164_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
digits_exp165:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_digits.py RP --glia=False --num_epochs=150 --random_projection=SP --use_gpu=True --lr=0.004 --seed_value=None --save=$(DATA_PATH)/digits_exp165_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# ---
# Org exp codes:
# fashion: 1-2 VAE
# fashion: 3-4 RP
fashion_exp5:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_fashion.py VAE --glia=True --num_epochs=150 --use_gpu=True --lr=0.004 --lr_vae=0.01 --seed_value=None --save=$(DATA_PATH)/fashion_exp5{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
fashion_exp6:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_fashion.py VAE --glia=False --num_epochs=150 --use_gpu=True --lr=0.004 --lr_vae=0.01 --seed_value=None --save=$(DATA_PATH)/fashion_exp6_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Glia
fashion_exp7:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_fashion.py RP --glia=True --num_epochs=150 --random_projection=SP --use_gpu=True --lr=0.004 --seed_value=None --save=$(DATA_PATH)/fashion_exp7_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5
# Neurons
fashion_exp8:
parallel -j 16 -v \
--nice 19 --delay 2 --colsep ',' \
'glia_fashion.py RP --glia=False --num_epochs=150 --random_projection=SP --use_gpu=True --lr=0.004 --seed_value=None --save=$(DATA_PATH)/fashion_exp8_{1}{2} --device_num={1}' ::: 0 1 2 3 ::: 1 2 3 4 5