-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgemm.c
953 lines (832 loc) · 34.8 KB
/
gemm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>
#include <sys/time.h>
#ifdef __INTEL_SSE__
# include <emmintrin.h>
# include <tmmintrin.h>
#elif __ARM_NEON__
# include <arm_neon.h>
# include "neon_math.h"
#endif
#ifdef OPENCL
# include "cl_wrapper.h"
#endif
#include "gemm.h"
struct gemm_context {
#ifdef OPENCL
char *program_buffer;
cl_program program;
cl_kernel kernel;
cl_mem d_A;
cl_mem d_B;
cl_mem d_C;
#endif
int transa;
int transb;
int m;
int n;
int k;
int round_up_m;
int round_up_n;
int round_up_k;
};
static void gemm_nn(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc);
static void gemm_tn(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc);
static void gemm_nt(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc);
static void gemm_tt(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc);
#ifdef __INTEL_SSE__
static void gemm_nn_sse(int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float *C, int ldc) __attribute__((used));
#elif __ARM_NEON__
static void gemm_nn_neon(int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float *C, int ldc) __attribute__((used));
#endif
#ifdef OPENCL
extern cl_wrapper wrapper;
extern char BINARY_FILENAME_TO_START(cl_common, h);
extern char BINARY_FILENAME_TO_END(cl_common, h);
extern char BINARY_FILENAME_TO_START(blas, cl);
extern char BINARY_FILENAME_TO_END(blas, cl);
static void gemm_nn_cl(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc);
static void __attribute__((unused)) gemm_nn_cl_sm(gemm_context *context, int m, int n, int k, float alpha,
float *A, int lda, float *B, int ldb, float beta, float *C, int ldc);
static void __attribute__((unused)) gemm_nn_cl_tp(gemm_context *context, int m, int n, int k, float alpha,
float *A, int lda, float *B, int ldb, float beta, float *C, int ldc);
#ifdef __linux__
static void __attribute__((unused)) gemm_nn_cl_ion(gemm_context *context, int m, int n, int k, float alpha,
float *A, int lda, float *B, int ldb, float beta, float *C, int ldc);
#endif
static void gemm_nt_cl(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc);
#endif
gemm_context *create_gemm_context(int transa, int transb, int m, int n, int k)
{
gemm_context *context = calloc(1, sizeof(gemm_context));
if (!context) {
fprintf(stderr, "calloc fail[%s:%d].\n", __FILE__, __LINE__);
return context;
}
context->transa = transa;
context->transb = transb;
context->m = m;
context->n = n;
context->k = k;
#if defined(OPENCL) && !defined(WINOGRAD_CONVOLUTION)
size_t header_size = (size_t)(&BINARY_FILENAME_TO_END(cl_common, h) - &BINARY_FILENAME_TO_START(cl_common, h));
size_t size = (size_t)(&BINARY_FILENAME_TO_END(blas, cl) - &BINARY_FILENAME_TO_START(blas, cl));
context->program_buffer = calloc(header_size + size + 1, sizeof(char));
if (!context->program_buffer) {
fprintf(stderr, "calloc fail[%s:%d].\n", __FILE__, __LINE__);
goto cleanup;
}
memcpy(context->program_buffer, &BINARY_FILENAME_TO_START(cl_common, h), header_size);
memcpy(context->program_buffer + header_size, &BINARY_FILENAME_TO_START(blas, cl), size);
context->program_buffer[header_size + size] = '\0';
cl_int errcode;
char options[] = "-cl-fast-relaxed-math -I.";
context->program = cl_make_wrapper_program(wrapper, "blas.cl", context->program_buffer, options, &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_program[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
goto cleanup;
}
context->kernel = cl_make_wrapper_kernel(wrapper, context->program, "sgemm_nn_8x8", &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_kernel[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
goto cleanup;
}
context->round_up_m = round_up_multiple_of_8(m);
context->round_up_n = round_up_multiple_of_8(n);
context->round_up_k = round_up_multiple_of_8(k);
context->d_A = clCreateBuffer(wrapper.context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
context->round_up_m * context->round_up_k * sizeof(float), NULL, &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clCreateBuffer fail[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
goto cleanup;
}
context->d_B = clCreateBuffer(wrapper.context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
context->round_up_k * context->round_up_n * sizeof(float), NULL, &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clCreateBuffer fail[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
goto cleanup;
}
context->d_C = clCreateBuffer(wrapper.context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
context->round_up_m * context->round_up_n * sizeof(float), NULL, &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clCreateBuffer fail[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
cleanup:free_gemm_context(context);
return 0;
}
#endif
return context;
}
/** @brief 通用的矩阵乘法,C=alhpa*A*B+beta*C.相乘前对A或B转置或共轭转置暂不支持.
** @param transa 转置(transa=1)或不转置(transa=0)矩阵A.
** @param transb 转置(transa=1)或不转置(transa=0)矩阵B.
** @param m 矩阵C的行数.
** @param n 矩阵C的列数.
** @param k 如果transa=0,k为矩阵A的列数.如果transa=1,k为矩阵A的行数.
** 如果transb=0,k为矩阵B的行数.如果transb=1,k为矩阵B的列数.
** @param alpha 矩阵A和矩阵B乘积的标量乘子.
** @param A 矩阵A.
** @param lda 矩阵A或其转置的行步长.
** @param B 矩阵B.
** @param ldb 矩阵B或其转置的行步长.
** @param beta 矩阵C的标量乘子.
** @param C 矩阵C.
** @param ldc 矩阵C的行步长.
**/
void gemm(gemm_context *context, int transa, int transb, int m, int n, int k, float alpha,
float *A, int lda, float *B, int ldb, float beta, float *C, int ldc)
{
#if !defined OPENCL
const int mn = m * n;
#ifdef __ARM_NEON__
const int batches = 4;
const int excess = mn - mn % batches;
#pragma omp parallel for num_threads(4)
for (int i = 0; i < excess; i += batches) {
float32x4_t cs = vld1q_f32(C + i);
cs = vmulq_n_f32(cs, beta);
vst1q_f32(C + i, cs);
}
for (int i = excess; i < mn; ++i) {
C[i] *= beta;
}
#else
#pragma omp parallel for
for (int i = 0; i < mn; ++i) {
C[i] *= beta;
}
#endif
#endif
if (!transa && !transb) {
gemm_nn(context, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
} else if (transa && !transb) {
gemm_tn(context, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
} else if (!transa && transb) {
gemm_nt(context, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
} else {
gemm_tt(context, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}
}
void free_gemm_context(gemm_context *context)
{
if (!context) return;
#if defined(OPENCL) && !defined(WINOGRAD_CONVOLUTION)
free(context->program_buffer);
clReleaseMemObject(context->d_A);
clReleaseMemObject(context->d_B);
clReleaseMemObject(context->d_C);
clReleaseProgram(context->program);
clReleaseKernel(context->kernel);
#endif
free(context);
context = NULL;
}
void gemm_nn(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
#if !defined OPENCL
#ifdef __ARM_NEON__
gemm_nn_neon(m, n, k, alpha, A, lda, B, ldb, C, ldc);
#elif __INTEL_SSE__
gemm_nn_sse(m, n, k, alpha, A, lda, B, ldb, C, ldc);
#endif
#pragma omp parallel for
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
float sum = 0;
for (int l = 0; l < k; ++l) {
sum += alpha * A[i * lda + l] * B[l * ldb + j];
}
C[i * ldc + j] += sum;
}
}
#else
gemm_nn_cl(context, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
#endif
}
void gemm_tn(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
fprintf(stderr, "Not implemented[%s:%d].\n", __FILE__, __LINE__);
}
void gemm_nt(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
#if !defined OPENCL
#pragma omp parallel for
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
float sum = 0;
for (int l = 0; l < k; ++l) {
sum += alpha * A[i * lda + l] * B[j * ldb + l];
}
C[i * ldc + j] += sum;
}
}
#else
gemm_nt_cl(context, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
#endif
}
void gemm_tt(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
fprintf(stderr, "Not implemented[%s:%d].\n", __FILE__, __LINE__);
}
#ifdef __INTEL_SSE__
void gemm_nn_sse(int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float *C, int ldc)
{
}
#elif __ARM_NEON__
void gemm_nn_neon(int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float *C, int ldc)
{
}
#endif
#ifdef OPENCL
void gemm_nn_cl(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
cl_int errcode;
const int _m = context->round_up_m;
const int _n = context->round_up_n;
const int _k = context->round_up_k;
const int _lda = _k;
const int _ldb = _n;
const int _ldc = _n;
float *h_A = clEnqueueMapBuffer(wrapper.command_queue, context->d_A, CL_TRUE, CL_MAP_WRITE,
0, _m * _k * sizeof(float), 0, NULL, NULL, &errcode);
for (int y = 0; y < m; ++y) {
for (int x = 0; x < k; ++x) {
h_A[y * _k + x] = A[y * k + x];
}
for (int x = k; x < _k; ++x) {
h_A[y * _k + x] = 0;
}
}
for (int y = m; y < _m; ++y) {
for (int x = 0; x < _k; ++x) {
h_A[y * _k + x] = 0;
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, context->d_A, h_A, 0, NULL, NULL);
float *h_B = clEnqueueMapBuffer(wrapper.command_queue, context->d_B, CL_TRUE, CL_MAP_WRITE,
0, _k * _n * sizeof(float), 0, NULL, NULL, &errcode);
for (int y = 0; y < k; ++y) {
for (int x = 0; x < n; ++x) {
h_B[y * _n + x] = B[y * n + x];
}
for (int x = n; x < _n; ++x) {
h_B[y * _n + x] = 0;
}
}
for (int y = k; y < _k; ++y) {
for (int x = 0; x < _n; ++x) {
h_B[y * _n + x] = 0;
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, context->d_B, h_B, 0, NULL, NULL);
float *h_C = clEnqueueMapBuffer(wrapper.command_queue, context->d_C, CL_TRUE, CL_MAP_WRITE,
0, _m * _n * sizeof(float), 0, NULL, NULL, &errcode);
for (int y = 0; y < m; ++y) {
for (int x = 0; x < n; ++x) {
h_C[y * _n + x] = C[y * n + x];
}
for (int x = n; x < _n; ++x) {
h_C[y * _n + x] = 0;
}
}
for (int y = m; y < _m; ++y) {
for (int x = 0; x < _n; ++x) {
h_C[y * _n + x] = 0;
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, context->d_C, h_C, 0, NULL, NULL);
errcode = clSetKernelArg(context->kernel, 0, sizeof(int), &_m);
errcode |= clSetKernelArg(context->kernel, 1, sizeof(int), &_n);
errcode |= clSetKernelArg(context->kernel, 2, sizeof(int), &_k);
errcode |= clSetKernelArg(context->kernel, 3, sizeof(float), &alpha);
errcode |= clSetKernelArg(context->kernel, 4, sizeof(cl_mem), &context->d_A);
errcode |= clSetKernelArg(context->kernel, 5, sizeof(int), &_lda);
errcode |= clSetKernelArg(context->kernel, 6, sizeof(cl_mem), &context->d_B);
errcode |= clSetKernelArg(context->kernel, 7, sizeof(int), &_ldb);
errcode |= clSetKernelArg(context->kernel, 8, sizeof(float), &beta);
errcode |= clSetKernelArg(context->kernel, 9, sizeof(cl_mem), &context->d_C);
errcode |= clSetKernelArg(context->kernel, 10, sizeof(int), &_ldc);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clSetKernelArg fail!\n");
return;
}
cl_event event;
cl_uint work_dim = 2;
size_t global_work_size[] = {_n >> 3, _m >> 3};
errcode = clEnqueueNDRangeKernel(wrapper.command_queue, context->kernel, work_dim, NULL, global_work_size,
NULL, 0, NULL, &event);
#ifdef NDEBUG
cl_ulong start, end;
clFinish(wrapper.command_queue);
errcode = clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
errcode |= clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
ZLOGD("gemm_nn_cl(|%dx%d|*|%dx%d|=>|%dx%d|*|%dx%d|): %f ms.\n", m, k, k, n, _m, _k, _k, _n, (end - start) * 1e-6f);
#endif
clReleaseEvent(event);
h_C = clEnqueueMapBuffer(wrapper.command_queue, context->d_C, CL_TRUE, CL_MAP_READ,
0, _m * _n * sizeof(float), 0, NULL, NULL, &errcode);
for (int y = 0; y < m; ++y) {
for (int x = 0; x < n; ++x) {
C[y * n + x] = h_C[y * _n + x];
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, context->d_C, h_C, 0, NULL, NULL);
}
void gemm_nn_cl_sm(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
cl_int errcode;
char options[] = "-cl-fast-relaxed-math";
cl_program program = cl_make_wrapper_program(wrapper, "blas.cl", context->program_buffer, options, &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_program[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_kernel kernel = cl_make_wrapper_kernel(wrapper, program, "sgemm_nn_sm", &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_kernel[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_kernel common_kernel = cl_make_wrapper_kernel(wrapper, program, "sgemm_nn_common", &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_kernel[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_mem d_A = clCreateBuffer(wrapper.context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
m * k * sizeof(float), NULL, &errcode);
cl_mem d_B = clCreateBuffer(wrapper.context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
k * n * sizeof(float), NULL, &errcode);
cl_mem d_C = clCreateBuffer(wrapper.context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
m * n * sizeof(float), NULL, &errcode);
float *h_A = clEnqueueMapBuffer(wrapper.command_queue, d_A, CL_TRUE, CL_MAP_WRITE,
0, m * k * sizeof(float), 0, NULL, NULL, &errcode);
memcpy(h_A, A, m * k * sizeof(float));
clEnqueueUnmapMemObject(wrapper.command_queue, d_A, h_A, 0, NULL, NULL);
float *h_B = clEnqueueMapBuffer(wrapper.command_queue, d_B, CL_TRUE, CL_MAP_WRITE,
0, k * n * sizeof(float), 0, NULL, NULL, &errcode);
memcpy(h_B, B, k * n * sizeof(float));
clEnqueueUnmapMemObject(wrapper.command_queue, d_B, h_B, 0, NULL, NULL);
float *h_C = clEnqueueMapBuffer(wrapper.command_queue, d_C, CL_TRUE, CL_MAP_WRITE,
0, m * n * sizeof(float), 0, NULL, NULL, &errcode);
memcpy(h_C, C, m * n * sizeof(float));
clEnqueueUnmapMemObject(wrapper.command_queue, d_C, h_C, 0, NULL, NULL);
errcode = clSetKernelArg(kernel, 0, sizeof(int), &m);
errcode |= clSetKernelArg(kernel, 1, sizeof(int), &n);
errcode |= clSetKernelArg(kernel, 2, sizeof(int), &k);
errcode |= clSetKernelArg(kernel, 3, sizeof(float), &alpha);
errcode |= clSetKernelArg(kernel, 4, sizeof(cl_mem), &d_A);
errcode |= clSetKernelArg(kernel, 5, sizeof(int), &lda);
errcode |= clSetKernelArg(kernel, 6, sizeof(cl_mem), &d_B);
errcode |= clSetKernelArg(kernel, 7, sizeof(int), &ldb);
errcode |= clSetKernelArg(kernel, 8, sizeof(float), &beta);
errcode |= clSetKernelArg(kernel, 9, sizeof(cl_mem), &d_C);
errcode |= clSetKernelArg(kernel, 10, sizeof(int), &ldc);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clSetKernelArg fail!\n");
return;
}
errcode = clSetKernelArg(common_kernel, 0, sizeof(int), &m);
errcode |= clSetKernelArg(common_kernel, 1, sizeof(int), &n);
errcode |= clSetKernelArg(common_kernel, 2, sizeof(int), &k);
errcode |= clSetKernelArg(common_kernel, 3, sizeof(float), &alpha);
errcode |= clSetKernelArg(common_kernel, 4, sizeof(cl_mem), &d_A);
errcode |= clSetKernelArg(common_kernel, 5, sizeof(int), &lda);
errcode |= clSetKernelArg(common_kernel, 6, sizeof(cl_mem), &d_B);
errcode |= clSetKernelArg(common_kernel, 7, sizeof(int), &ldb);
errcode |= clSetKernelArg(common_kernel, 8, sizeof(float), &beta);
errcode |= clSetKernelArg(common_kernel, 9, sizeof(cl_mem), &d_C);
errcode |= clSetKernelArg(common_kernel, 10, sizeof(int), &ldc);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clSetKernelArg fail!\n");
return;
}
const int tile_rows = 8;
const int tile_cols = 8;
const int _m = (m / tile_rows) * tile_rows;
const int _n = (n / tile_cols) * tile_cols;
cl_event event;
cl_uint work_dim = 2;
if (_m && _n) {
size_t global_work_size[] = {_n, _m};
size_t local_work_size[] = {16, 16};
errcode = clEnqueueNDRangeKernel(wrapper.command_queue, kernel, work_dim, NULL, global_work_size,
local_work_size, 0, NULL, &event);
if (n != _n) {
size_t global_work_offset[] = {_n, 0};
size_t global_work_size[] = {n - _n, _m};
errcode = clEnqueueNDRangeKernel(wrapper.command_queue, common_kernel, work_dim, global_work_offset,
global_work_size, NULL, 0, NULL, NULL);
}
if (m != _m) {
size_t global_work_offset[] = {0, _m};
size_t global_work_size[] = {n, m - _m};
errcode = clEnqueueNDRangeKernel(wrapper.command_queue, common_kernel, work_dim, global_work_offset,
global_work_size, NULL, 0, NULL, NULL);
}
} else {
size_t global_work_size[] = {n, m};
errcode = clEnqueueNDRangeKernel(wrapper.command_queue, common_kernel, work_dim, NULL,
global_work_size, NULL, 0, NULL, &event);
}
#ifdef NDEBUG
cl_ulong start, end;
clFinish(wrapper.command_queue);
errcode = clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
errcode |= clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
ZLOGD("gemm_nn_cl_sm: %f ms.\n", (end - start) * 1e-6f);
#endif
clReleaseEvent(event);
h_C = clEnqueueMapBuffer(wrapper.command_queue, d_C, CL_TRUE, CL_MAP_READ,
0, m * n * sizeof(float), 0, NULL, NULL, &errcode);
memcpy(C, h_C, m * n * sizeof(float));
clEnqueueUnmapMemObject(wrapper.command_queue, d_C, h_C, 0, NULL, NULL);
clReleaseMemObject(d_A);
clReleaseMemObject(d_B);
clReleaseMemObject(d_C);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseKernel(common_kernel);
}
void gemm_nn_cl_tp(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
cl_int errcode;
char options[] = "-cl-fast-relaxed-math";
cl_program program = cl_make_wrapper_program(wrapper, "blas.cl", context->program_buffer, options, &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_program[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_kernel kernel = cl_make_wrapper_kernel(wrapper, program, "sgemm_nn_8x4_tp", &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_kernel[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
const int _m = ((m + 7) / 8) * 8;
const int _n = ((n + 3) / 4) * 4;
const int _k = ((k + 3) / 4) * 4;
const int _lda = _k;
const int _ldc = _n;
cl_mem d_A = clCreateBuffer(wrapper.context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
_m * _k * sizeof(float), NULL, &errcode);
float *h_A = clEnqueueMapBuffer(wrapper.command_queue, d_A, CL_TRUE, CL_MAP_WRITE, 0,
_m * _k * sizeof(float), 0, NULL, NULL, &errcode);
for (int y = 0; y < m; ++y) {
for (int x = 0; x < k; ++x) {
h_A[y * _k + x] = A[y * k + x];
}
for (int x = k; x < _k; ++x) {
h_A[y * _k + x] = 0;
}
}
for (int y = m; y < _m; ++y) {
for (int x = 0; x < _k; ++x) {
h_A[y * _k + x] = 0;
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, d_A, h_A, 0, NULL, NULL);
cl_mem d_C = clCreateBuffer(wrapper.context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
_m * _n * sizeof(float), NULL, &errcode);
float *h_C = clEnqueueMapBuffer(wrapper.command_queue, d_C, CL_TRUE, CL_MAP_WRITE, 0,
_m * _n * sizeof(float), 0, NULL, NULL, &errcode);
for (int y = 0; y < m; ++y) {
for (int x = 0; x < n; ++x) {
h_C[y * _n + x] = C[y * n + x];
}
for (int x = n; x < _n; ++x) {
h_C[y * _n + x] = 0;
}
}
for (int y = m; y < _m; ++y) {
for (int x = 0; x < _n; ++x) {
h_C[y * _n + x] = 0;
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, d_C, h_C, 0, NULL, NULL);
cl_mem_flags flags = CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR;
cl_image_format image_format = {CL_RGBA, CL_FLOAT};
cl_image_desc image_desc = {
.image_type = CL_MEM_OBJECT_IMAGE2D,
.image_width = _n >> 2,
.image_height = _k,
.image_row_pitch = 0};
cl_mem d_B = clCreateImage(wrapper.context, flags, &image_format, &image_desc, NULL, &errcode);
size_t origin[] = {0, 0, 0};
size_t region[] = {_n >> 2, _k, 1};
size_t image_row_pitch, image_slice_pitch;
float *h_B = clEnqueueMapImage(wrapper.command_queue, d_B, CL_TRUE, CL_MAP_WRITE, origin,
region, &image_row_pitch, &image_slice_pitch, 0, NULL, NULL, &errcode);
image_row_pitch = image_row_pitch >> 2;
for (int y = 0; y < k; ++y) {
for (int x = 0; x < n; ++x) {
h_B[y * image_row_pitch + x] = B[y * n + x];
}
for (int x = n; x < _n; ++x) {
h_B[y * image_row_pitch + x] = 0;
}
}
for (int y = k; y < _k; ++y) {
for (int x = 0; x < _n; ++x) {
h_B[y * image_row_pitch + x] = 0;
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, d_B, h_B, 0, NULL, NULL);
errcode = clSetKernelArg(kernel, 0, sizeof(int), &_m);
errcode |= clSetKernelArg(kernel, 1, sizeof(int), &_n);
errcode |= clSetKernelArg(kernel, 2, sizeof(int), &_k);
errcode |= clSetKernelArg(kernel, 3, sizeof(float), &alpha);
errcode |= clSetKernelArg(kernel, 4, sizeof(cl_mem), &d_A);
errcode |= clSetKernelArg(kernel, 5, sizeof(int), &_lda);
errcode |= clSetKernelArg(kernel, 6, sizeof(cl_mem), &d_B);
errcode |= clSetKernelArg(kernel, 7, sizeof(float), &beta);
errcode |= clSetKernelArg(kernel, 8, sizeof(cl_mem), &d_C);
errcode |= clSetKernelArg(kernel, 9, sizeof(int), &_ldc);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clSetKernelArg fail!\n");
return;
}
cl_event event;
cl_uint work_dim = 2;
size_t global_work_size[] = {_n >> 2, _m >> 3};
size_t local_work_size[] = {128, 8};
clEnqueueNDRangeKernel(wrapper.command_queue, kernel, work_dim, NULL, global_work_size,
local_work_size, 0, NULL, &event);
#ifdef NDEBUG
cl_ulong start, end;
clFinish(wrapper.command_queue);
errcode = clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
errcode |= clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
ZLOGD("gemm_nn_cl_tp(|%dx%d|*|%dx%d|=>|%dx%d|*|%dx%d|): %f ms.\n", m, k, k, n, _m, _k, _k, _n, (end - start) * 1e-6f);
#endif
clReleaseEvent(event);
h_C = clEnqueueMapBuffer(wrapper.command_queue, d_C, CL_TRUE, CL_MAP_WRITE, 0,
_m * _n * sizeof(float), 0, NULL, NULL, &errcode);
for (int y = 0; y < m; ++y) {
for (int x = 0; x < n; ++x) {
C[y * n + x] = h_C[y * _n + x];
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, d_C, h_C, 0, NULL, NULL);
clReleaseMemObject(d_A);
clReleaseMemObject(d_B);
clReleaseMemObject(d_C);
clReleaseProgram(program);
clReleaseKernel(kernel);
}
#ifdef __linux__
void gemm_nn_cl_ion(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
cl_int errcode;
char options[] = "-cl-fast-relaxed-math";
cl_program program = cl_make_wrapper_program(wrapper, "blas.cl", context->program_buffer, options, &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_program[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_kernel kernel = cl_make_wrapper_kernel(wrapper, program, "matmul_8x4_blocks", &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_kernel[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_image_format image_a_format = {
.image_channel_order = CL_RGBA,
.image_channel_data_type = CL_FLOAT
};
cl_image_desc image_a_desc;
memset(&image_a_desc, 0, sizeof(cl_image_desc));
image_a_desc.image_type = CL_MEM_OBJECT_IMAGE2D,
image_a_desc.image_width = (k + 3) / 4,
image_a_desc.image_height = ((m + 7) / 8) * 8,
image_a_desc.image_row_pitch = cl_get_ion_image_row_pitch(wrapper, image_a_format, image_a_desc);
cl_ion_context ion_context_a = cl_make_ion_buffer_for_nonplanar_image(wrapper, image_a_desc);
cl_mem_flags mem_flags = CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR | CL_MEM_EXT_HOST_PTR_QCOM;
cl_mem image_a = clCreateImage(wrapper.context, mem_flags, &image_a_format, &image_a_desc, &ion_context_a.ion_mem, &errcode);
size_t image_a_origin[] = {0, 0, 0};
size_t image_a_region[] = {image_a_desc.image_width, image_a_desc.image_height, 1};
size_t image_a_row_pitch, image_a_slice_pitch;
float *image_a_ptr = clEnqueueMapImage(wrapper.command_queue, image_a, CL_TRUE, CL_MAP_WRITE, image_a_origin,
image_a_region, &image_a_row_pitch, &image_a_slice_pitch, 0, NULL, NULL, &errcode);
image_a_row_pitch = image_a_row_pitch >> 2;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < k; ++j) {
*(image_a_ptr + i * image_a_row_pitch + j) = *(A + i * k + j);
}
for (int j = k; j < image_a_desc.image_width; ++j) {
*(image_a_ptr + i * image_a_row_pitch + j) = 0;
}
}
for (int i = m; i < image_a_desc.image_height; ++i) {
for (int j = 0; j < image_a_desc.image_width; ++j) {
*(image_a_ptr + i * image_a_row_pitch + j) = 0;
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, image_a, image_a_ptr, 0, NULL, NULL);
cl_image_format image_b_format = {
.image_channel_order = CL_RGBA,
.image_channel_data_type = CL_FLOAT};
cl_image_desc image_b_desc;
memset(&image_b_desc, 0, sizeof(cl_image_desc));
image_b_desc.image_type = CL_MEM_OBJECT_IMAGE2D,
image_b_desc.image_width = (n + 3) / 4,
image_b_desc.image_height = ((k + 7) / 8) * 8,
image_b_desc.image_row_pitch = cl_get_ion_image_row_pitch(wrapper, image_b_format, image_b_desc);
cl_ion_context ion_context_b = cl_make_ion_buffer_for_nonplanar_image(wrapper, image_b_desc);
mem_flags = CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR | CL_MEM_EXT_HOST_PTR_QCOM;
cl_mem image_b = clCreateImage(wrapper.context, mem_flags, &image_b_format, &image_b_desc, &ion_context_b.ion_mem, &errcode);
size_t image_b_origin[] = {0, 0, 0};
size_t image_b_region[] = {image_b_desc.image_width, image_b_desc.image_height, 1};
size_t image_b_row_pitch, image_b_slice_pitch;
float *image_b_ptr = clEnqueueMapImage(wrapper.command_queue, image_b, CL_TRUE, CL_MAP_WRITE, image_b_origin,
image_b_region, &image_b_row_pitch, &image_b_slice_pitch, 0, NULL, NULL, &errcode);
image_b_row_pitch = image_b_row_pitch >> 2;
for (int i = 0; i < k; ++i) {
for (int j = 0; j < n; ++j) {
*(image_b_ptr + i * image_b_row_pitch + j) = *(B + i * n + j);
}
for (int j = n; j < image_b_desc.image_width; ++j) {
*(image_b_ptr + i * image_b_row_pitch + j) = 0;
}
}
for (int i = k; i < image_b_desc.image_height; ++i) {
for (int j = 0; j < image_b_desc.image_width; ++j) {
*(image_b_ptr + i * image_b_row_pitch + j) = 0;
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, image_b, image_b_ptr, 0, NULL, NULL);
cl_image_format image_c_format = {
.image_channel_order = CL_RGBA,
.image_channel_data_type = CL_FLOAT};
cl_image_desc image_c_desc;
memset(&image_c_desc, 0, sizeof(cl_image_desc));
image_c_desc.image_type = CL_MEM_OBJECT_IMAGE2D,
image_c_desc.image_width = (n + 3) / 4,
image_c_desc.image_height = ((m + 7) / 8) * 8,
image_c_desc.image_row_pitch = cl_get_ion_image_row_pitch(wrapper, image_c_format, image_c_desc);
cl_ion_context ion_context_c = cl_make_ion_buffer_for_nonplanar_image(wrapper, image_c_desc);
mem_flags = CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR | CL_MEM_EXT_HOST_PTR_QCOM;
cl_mem image_c = clCreateImage(wrapper.context, mem_flags, &image_c_format, &image_c_desc, &ion_context_c.ion_mem, &errcode);
errcode = clSetKernelArg(kernel, 0, sizeof(cl_mem), &image_a);
errcode |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &image_b);
errcode |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &image_c);
errcode |= clSetKernelArg(kernel, 3, sizeof(cl_int), &k);
cl_event event;
cl_uint work_dim = 2;
size_t global_work_size[] = {image_b_desc.image_width, image_a_desc.image_height / 8};
clEnqueueNDRangeKernel(wrapper.command_queue, kernel, work_dim, NULL, global_work_size,
NULL, 0, NULL, &event);
#ifdef NDEBUG
cl_ulong start, end;
clFinish(wrapper.command_queue);
errcode = clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
errcode |= clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
ZLOGD("gemm_nn_cl_ion: %f ms.\n", (end - start) * 1e-6f);
#endif
clReleaseEvent(event);
size_t image_c_origin[] = {0, 0, 0};
size_t image_c_region[] = {image_c_desc.image_width, image_c_desc.image_height, 1};
size_t image_c_row_pitch, image_c_slice_pitch;
float *image_c_ptr = clEnqueueMapImage(wrapper.command_queue, image_c, CL_TRUE, CL_MAP_READ, image_c_origin,
image_c_region, &image_c_row_pitch, &image_c_slice_pitch, 0, NULL, NULL, &errcode);
image_c_row_pitch = image_c_row_pitch >> 2;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
*(C + i * n + j) = *(image_c_ptr + i * image_c_row_pitch + j);
}
}
clEnqueueUnmapMemObject(wrapper.command_queue, image_a, image_a_ptr, 0, NULL, NULL);
cl_free_ion_context(wrapper, ion_context_a);
cl_free_ion_context(wrapper, ion_context_b);
cl_free_ion_context(wrapper, ion_context_c);
clReleaseMemObject(image_a);
clReleaseMemObject(image_b);
clReleaseMemObject(image_c);
clReleaseProgram(program);
clReleaseKernel(kernel);
}
#endif
void gemm_nt_cl(gemm_context *context, int m, int n, int k, float alpha, float *A, int lda,
float *B, int ldb, float beta, float *C, int ldc)
{
cl_int errcode;
char options[] = "-cl-fast-relaxed-math";
cl_program program = cl_make_wrapper_program(wrapper, "blas.cl", context->program_buffer, options, &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_program[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_kernel kernel = cl_make_wrapper_kernel(wrapper, program, "sgemm_nt_8x4", &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_kernel[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_kernel common_kernel = cl_make_wrapper_kernel(wrapper, program, "sgemm_nt_common", &errcode);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "cl_make_wrapper_kernel[%s:%d:%d].\n", __FILE__, __LINE__, errcode);
return;
}
cl_mem d_A = clCreateBuffer(wrapper.context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
m * k * sizeof(float), NULL, &errcode);
cl_mem d_B = clCreateBuffer(wrapper.context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
k * n * sizeof(float), NULL, &errcode);
cl_mem d_C = clCreateBuffer(wrapper.context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
m * n * sizeof(float), NULL, &errcode);
float *h_A = clEnqueueMapBuffer(wrapper.command_queue, d_A, CL_TRUE, CL_MAP_WRITE,
0, m * k * sizeof(float), 0, NULL, NULL, &errcode);
memcpy(h_A, A, m * k * sizeof(float));
clEnqueueUnmapMemObject(wrapper.command_queue, d_A, h_A, 0, NULL, NULL);
float *h_B = clEnqueueMapBuffer(wrapper.command_queue, d_B, CL_TRUE, CL_MAP_WRITE,
0, k * n * sizeof(float), 0, NULL, NULL, &errcode);
memcpy(h_B, B, k * n * sizeof(float));
clEnqueueUnmapMemObject(wrapper.command_queue, d_B, h_B, 0, NULL, NULL);
float *h_C = clEnqueueMapBuffer(wrapper.command_queue, d_C, CL_TRUE, CL_MAP_WRITE,
0, m * n * sizeof(float), 0, NULL, NULL, &errcode);
memcpy(h_C, C, m * n * sizeof(float));
clEnqueueUnmapMemObject(wrapper.command_queue, d_C, h_C, 0, NULL, NULL);
errcode = clSetKernelArg(kernel, 0, sizeof(int), &m);
errcode |= clSetKernelArg(kernel, 1, sizeof(int), &n);
errcode |= clSetKernelArg(kernel, 2, sizeof(int), &k);
errcode |= clSetKernelArg(kernel, 3, sizeof(float), &alpha);
errcode |= clSetKernelArg(kernel, 4, sizeof(cl_mem), &d_A);
errcode |= clSetKernelArg(kernel, 5, sizeof(int), &lda);
errcode |= clSetKernelArg(kernel, 6, sizeof(cl_mem), &d_B);
errcode |= clSetKernelArg(kernel, 7, sizeof(int), &ldb);
errcode |= clSetKernelArg(kernel, 8, sizeof(float), &beta);
errcode |= clSetKernelArg(kernel, 9, sizeof(cl_mem), &d_C);
errcode |= clSetKernelArg(kernel, 10, sizeof(int), &ldc);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clSetKernelArg fail!\n");
return;
}
errcode = clSetKernelArg(common_kernel, 0, sizeof(int), &m);
errcode |= clSetKernelArg(common_kernel, 1, sizeof(int), &n);
errcode |= clSetKernelArg(common_kernel, 2, sizeof(int), &k);
errcode |= clSetKernelArg(common_kernel, 3, sizeof(float), &alpha);
errcode |= clSetKernelArg(common_kernel, 4, sizeof(cl_mem), &d_A);
errcode |= clSetKernelArg(common_kernel, 5, sizeof(int), &lda);
errcode |= clSetKernelArg(common_kernel, 6, sizeof(cl_mem), &d_B);
errcode |= clSetKernelArg(common_kernel, 7, sizeof(int), &ldb);
errcode |= clSetKernelArg(common_kernel, 8, sizeof(float), &beta);
errcode |= clSetKernelArg(common_kernel, 9, sizeof(cl_mem), &d_C);
errcode |= clSetKernelArg(common_kernel, 10, sizeof(int), &ldc);
if (CL_SUCCESS != errcode) {
fprintf(stderr, "clSetKernelArg fail!\n");
return;
}
const int tile_rows = 8;
const int tile_cols = 4;
const int _m = (m / tile_rows) * tile_rows;
const int _n = (n / tile_cols) * tile_cols;
cl_event event;
cl_uint work_dim = 2;
size_t global_work_size[] = {_n >> 2, _m >> 3};
errcode = clEnqueueNDRangeKernel(wrapper.command_queue, kernel, work_dim, NULL,
global_work_size, NULL, 0, NULL, &event);
if (n != _n) {
size_t global_work_offset[] = {_n, 0};
size_t global_work_size[] = {n - _n, _m};
errcode = clEnqueueNDRangeKernel(wrapper.command_queue, common_kernel, work_dim, global_work_offset,
global_work_size, NULL, 0, NULL, NULL);
}
if (m != _m) {
size_t global_work_offset[] = {0, _m};
size_t global_work_size[] = {n, m - _m};
errcode = clEnqueueNDRangeKernel(wrapper.command_queue, common_kernel, work_dim, global_work_offset,
global_work_size, NULL, 0, NULL, NULL);
}
#ifdef NDEBUG
cl_ulong start, end;
clFinish(wrapper.command_queue);
errcode = clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
errcode |= clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
ZLOGD("gemm_nt_cl: %f ms.\n", (end - start) * 1e-6f);
#endif
clReleaseEvent(event);
h_C = clEnqueueMapBuffer(wrapper.command_queue, d_C, CL_TRUE, CL_MAP_READ,
0, m * n * sizeof(float), 0, NULL, NULL, &errcode);
memcpy(C, h_C, m * n * sizeof(float));
clEnqueueUnmapMemObject(wrapper.command_queue, d_C, h_C, 0, NULL, NULL);
clReleaseMemObject(d_A);
clReleaseMemObject(d_B);
clReleaseMemObject(d_C);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseKernel(common_kernel);
}
#endif