-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhw1_grasp_jane.py
288 lines (228 loc) · 10.7 KB
/
hw1_grasp_jane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
PACKAGE_NAME = 'hw1'
# Standard Python Imports
import os
import copy
import time
import math
import numpy as np
np.random.seed(0)
import scipy
# OpenRAVE
import openravepy
#openravepy.RaveInitialize(True, openravepy.DebugLevel.Debug)
curr_path = os.getcwd()
relative_ordata = '/models'
ordata_path_thispack = curr_path + relative_ordata
#this sets up the OPENRAVE_DATA environment variable to include the files we're using
openrave_data_path = os.getenv('OPENRAVE_DATA', '')
openrave_data_paths = openrave_data_path.split(':')
if ordata_path_thispack not in openrave_data_paths:
if openrave_data_path == '':
os.environ['OPENRAVE_DATA'] = ordata_path_thispack
else:
datastr = str('%s:%s'%(ordata_path_thispack, openrave_data_path))
os.environ['OPENRAVE_DATA'] = datastr
#set database file to be in this folder only
relative_ordatabase = '/database'
ordatabase_path_thispack = curr_path + relative_ordatabase
os.environ['OPENRAVE_DATABASE'] = ordatabase_path_thispack # set path: environment variable
#get rid of warnings
openravepy.RaveInitialize(True, openravepy.DebugLevel.Fatal)
openravepy.misc.InitOpenRAVELogging()
def normalize(n, range):
return (1.0*n - range[0])/(range[1] - range[0])
class RoboHandler:
def __init__(self):
print "Initializing..."
print "Openrave..."
self.openrave_init()
print "Problem..."
self.problem_init()
#order grasps based on your own scoring metric
print "Ordering grasps..."
self.order_grasps()
#order grasps with noise
print "Ordering with noise..."
#self.order_grasps_noisy()
# the usual initialization for openrave
def openrave_init(self):
self.env = openravepy.Environment()
self.env.SetViewer('qtcoin')
self.env.GetViewer().SetName('HW1 Viewer')
self.env.Load('models/%s.env.xml' %PACKAGE_NAME)
# time.sleep(3) # wait for viewer to initialize. May be helpful to uncomment
self.robot = self.env.GetRobots()[0]
self.manip = self.robot.GetActiveManipulator()
self.end_effector = self.manip.GetEndEffector()
self.s = [0, 0] # singmaMin range
self.v = [0, 0] # volumeG range
self.i = [0, 0] # isotropy range
self.raw_scores = []
# cc = openravepy.RaveCreateCollisionChecker(self.env, 'pqp')
# self.env.SetCollisionChecker(cc)
# problem specific initialization - load target and grasp module
def problem_init(self):
self.target_kinbody = self.env.ReadKinBodyURI('models/objects/champagne.iv')
#self.target_kinbody = self.env.ReadKinBodyURI('models/objects/winegoblet.iv')
#self.target_kinbody = self.env.ReadKinBodyURI('models/objects/black_plastic_mug.iv')
#change the location so it's not under the robot
T = self.target_kinbody.GetTransform()
T[0:3,3] += np.array([0.5, 0.5, 0.5])
self.target_kinbody.SetTransform(T)
self.env.AddKinBody(self.target_kinbody)
# create a grasping module
self.gmodel = openravepy.databases.grasping.GraspingModel(self.robot, self.target_kinbody)
# if you want to set options, e.g. friction
options = openravepy.options
options.friction = 0.1
if not self.gmodel.load():
self.gmodel.autogenerate(options)
self.graspindices = self.gmodel.graspindices
self.grasps = self.gmodel.grasps
def get_raw_score_range(self):
# go this loop to get raw scores and find the range of the raw scores
for grasp in self.grasps_ordered:
self.raw_scores.append(self.eval_grasp(grasp))
# get the range of the three metric through the whole loop doing evaluation for each grasp
all_sigmaMin = [n[0] for n in self.raw_scores]
all_volumnG = [n[1] for n in self.raw_scores]
all_isotropy = [n[2] for n in self.raw_scores]
self.s = [min(all_sigmaMin), max(all_sigmaMin)]
self.v = [min(all_volumnG), max(all_volumnG)]
self.i = [min(all_isotropy), max(all_isotropy)]
# order the grasps - call eval grasp on each, set the 'performance' index, and sort
def order_grasps(self):
self.grasps_ordered = self.grasps.copy() #you should change the order of self.grasps_ordered
# get raw scores before sorting
self.get_raw_score_range()
# normalize raw scores and linearly combine them to get the final score for each grasp
# This cannot be done in eval() function because the run-time eval() doesn't have those ranges to normalize the metrics until all grasps are evaluated.
for i, grasp in enumerate(self.grasps_ordered):
sigmaMin = self.raw_scores[i][0]
volumeG = self.raw_scores[i][1]
isotropy = self.raw_scores[i][2]
score = 2.0*normalize(sigmaMin, self.s) + 5.0*normalize(volumeG, self.v) + 10.0*normalize(isotropy, self.i)
grasp[self.graspindices.get('performance')] = score
# sort!
order = np.argsort(self.grasps_ordered[:,self.graspindices.get('performance')[0]])
order = order[::-1]
self.grasps_ordered = self.grasps_ordered[order]
# order the grasps - but instead of evaluating the grasp, evaluate random perturbations of the grasp
def order_grasps_noisy(self):
self.grasps_ordered_noisy = self.grasps_ordered.copy() #you should change the order of self.grasps_ordered_noisy
#TODO set the score with your evaluation function (over random samples) and sort
num_noisy_samples = 5
for grasp in self.grasps_ordered_noisy:
noisy_samples = []
for i in range(num_noisy_samples):
noisy_grasp = self.sample_random_grasp(grasp)
score = self.eval_grasp(noisy_grasp)
noisy_samples.append(score)
grasp[self.graspindices.get('performance')] = sum(noisy_samples) / num_noisy_samples
# sort!
order = np.argsort(self.grasps_ordered_noisy[:,self.graspindices.get('performance')[0]])
order = order[::-1]
self.grasps_ordered_noisy = self.grasps_ordered_noisy[order]
# function to evaluate grasps
# returns a score, which is some metric of the grasp
# higher score should be a better grasp
def eval_grasp(self, grasp):
with self.robot:
#contacts is a 2d array, where contacts[i,0-2] are the positions of contact i and contacts[i,3-5] is the direction
try:
contacts,finalconfig,mindist,volume = self.gmodel.testGrasp(grasp=grasp,translate=True,forceclosure=False)
obj_position = self.gmodel.target.GetTransform()[0:3,3]
# for each contact
G = np.zeros(shape=(6, len(contacts))) #the wrench matrix
wrench = np.zeros(shape=(6,1))
for i, c in enumerate(contacts):
pos = c[0:3] - obj_position
dir = -c[3:] #this is already a unit vector
# fill G
torque = np.cross(pos, dir)
wrench = np.concatenate([dir, torque])
G[:, i] = wrench
# Use SVD to compute minimum score
U, S, V = np.linalg.svd(G)
sigmaMin = abs(S[-1])
sigmaMax = abs(S[0])
volumeG = np.linalg.det(np.dot(G, np.transpose(G))) ** 0.5
isotropy = abs(float(sigmaMin) / sigmaMax)
score = [sigmaMin, volumeG, isotropy]
return score
except openravepy.planning_error,e:
#you get here if there is a failure in planning
#example: if the hand is already intersecting the object at the initial position/orientation
return [0.00, 0.00, 0.00]# TODO you may want to change this
#heres an interface in case you want to manipulate things more specifically
#NOTE for this assignment, your solutions cannot make use of graspingnoise
# self.robot.SetTransform(np.eye(4)) # have to reset transform in order to remove randomness
# self.robot.SetDOFValues(grasp[self.graspindices.get('igrasppreshape')], self.manip.GetGripperIndices())
# self.robot.SetActiveDOFs(self.manip.GetGripperIndices(), self.robot.DOFAffine.X + self.robot.DOFAffine.Y + self.robot.DOFAffine.Z)
# self.gmodel.grasper = openravepy.interfaces.Grasper(self.robot, friction=self.gmodel.grasper.friction, avoidlinks=[], plannername=None)
# contacts, finalconfig, mindist, volume = self.gmodel.grasper.Grasp( \
# direction = grasp[self.graspindices.get('igraspdir')], \
# roll = grasp[self.graspindices.get('igrasproll')], \
# position = grasp[self.graspindices.get('igrasppos')], \
# standoff = grasp[self.graspindices.get('igraspstandoff')], \
# manipulatordirection = grasp[self.graspindices.get('imanipulatordirection')], \
# target = self.target_kinbody, \
# graspingnoise = 0.0, \
# forceclosure = True, \
# execute = False, \
# outputfinal = True, \
# translationstepmult = None, \
# finestep = None )
# given grasp_in, create a new grasp which is altered randomly
# you can see the current position and direction of the grasp by:
# grasp[self.graspindices.get('igrasppos')]
# grasp[self.graspindices.get('igraspdir')]
def sample_random_grasp(self, grasp_in):
grasp = grasp_in.copy()
#sample random position
RAND_DIST_SIGMA = 0.01 #TODO you may want to change this
pos_orig = grasp[self.graspindices['igrasppos']]
pos_noise = pos_orig + np.random.normal(loc=0.0, scale=RAND_DIST_SIGMA)
#TODO set a random position -- DONE
grasp[self.graspindices['igrasppos']] = pos_noise
#sample random orientation
RAND_ANGLE_SIGMA = np.pi/24 #TODO you may want to change this
dir_orig = grasp[self.graspindices['igraspdir']]
roll_orig = grasp[self.graspindices['igrasproll']]
#TODO set the direction and roll to be random -- DONE
dir_noise = dir_orig + np.random.normal(loc=0.0, scale=RAND_ANGLE_SIGMA)
roll_noise = roll_orig + np.random.normal(loc=0.0, scale=RAND_ANGLE_SIGMA)
grasp[self.graspindices['igraspdir']] = dir_noise
grasp[self.graspindices['igrasproll']] = roll_noise
return grasp
#displays the grasp
def show_grasp(self, grasp, delay=1.5):
with openravepy.RobotStateSaver(self.gmodel.robot):
with self.gmodel.GripperVisibility(self.gmodel.manip):
time.sleep(0.1) # let viewer update?
try:
with self.env:
contacts,finalconfig,mindist,volume = self.gmodel.testGrasp(grasp=grasp,translate=True,forceclosure=True)
#if mindist == 0:
# print 'grasp is not in force closure!'
contactgraph = self.gmodel.drawContacts(contacts) if len(contacts) > 0 else None
self.gmodel.robot.GetController().Reset(0)
self.gmodel.robot.SetDOFValues(finalconfig[0])
self.gmodel.robot.SetTransform(finalconfig[1])
self.env.UpdatePublishedBodies()
time.sleep(delay)
except openravepy.planning_error,e:
print 'bad grasp!',e
if __name__ == '__main__':
robo = RoboHandler()
delay = 20
for i in range(4):
print 'Showing grasp ', i
robo.show_grasp(robo.grasps_ordered[i], delay=delay)
# import IPython
# IPython.embed()
# print "Showing grasps..."
# for grasp in robo.grasps_ordered:
# robo.show_grasp(grasp)
# time.sleep(10000) #to keep the openrave window open