-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
674 lines (533 loc) · 29.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import datasets
import settings
from model import ImgNet_V1, TxtNet_V1, ImgNet_ab, TxtNet_ab
from metric import compress_wiki, compress_nus,compress,compress_ab, calculate_top_map, load_feature_construct_H, generate_G_from_H,calculate_map
import os.path as osp
import random
import numpy as np
import copy
from tools import build_G_from_S, generate_robust_S, cal_sim
import csv
from tensorboardX import SummaryWriter
import matplotlib.pyplot as plt
import math
writer = SummaryWriter('HCAC/log')
#返回 归一化后 的数据集图文特征,其中图像特征为基于预训练模型提取的特征,文本特征为数据集自带的特征
def extract_features(img_model, dataloader, feature_loader):
"""
Extract features.
"""
if settings.DATASET == "WIKI":
sample_num = len(feature_loader.dataset.label)
else:
sample_num = feature_loader.dataset.train_labels.shape[0]
img_model.cuda().eval()
img_features = torch.zeros(sample_num, 4096).cuda()
if settings.DATASET == "MIRFlickr":
txt_features = torch.zeros(sample_num, 1386).cuda()
if settings.DATASET == "WIKI":
txt_features = torch.zeros(sample_num, 10).cuda()
if settings.DATASET == "NUSWIDE":
txt_features = torch.zeros(sample_num, 1000).cuda()
if settings.DATASET == "MSCOCO":
txt_features = torch.zeros(sample_num, 2000).cuda()
with torch.no_grad():
for i, (img, F_T, _, index) in enumerate(dataloader):
img = Variable(img.cuda())
F_T = Variable(torch.FloatTensor(F_T.numpy()).cuda())
img_features[index, :], _, _ = img_model(img)
txt_features[index, :] = F_T
return F.normalize(img_features), F.normalize(txt_features)
#对联合模态语义相似度矩阵进行随机游走,此处代码参考“https://github.com/rongchengtu1/MLS3RDUH”
if settings.DATASET == "WIKI":
train_dataset = datasets.WIKI(root=settings.DATA_DIR, train=True, transform=datasets.wiki_train_transform)
test_dataset = datasets.WIKI(root=settings.DATA_DIR, train=False, transform=datasets.wiki_test_transform)
database_dataset = datasets.WIKI(root=settings.DATA_DIR, train=True, transform=datasets.wiki_test_transform)
feature_dataset = datasets.WIKI(root=settings.DATA_DIR, train=True, transform=datasets.wiki_test_transform)
feature_dataset_test = datasets.WIKI(root=settings.DATA_DIR, train=False, transform=datasets.wiki_test_transform)
feature_dataset_database = datasets.WIKI(root=settings.DATA_DIR, train=True, transform=datasets.wiki_test_transform)
if settings.DATASET == "MIRFlickr":
train_dataset = datasets.MIRFlickr(train=True, transform=datasets.mir_train_transform)
test_dataset = datasets.MIRFlickr(train=False, database=False, transform=datasets.mir_test_transform)
database_dataset = datasets.MIRFlickr(train=False, database=True, transform=datasets.mir_test_transform)
feature_dataset = datasets.MIRFlickr(train=True, transform=datasets.mir_test_transform)
feature_dataset_test = datasets.MIRFlickr(train=False, database=False, transform=datasets.mir_test_transform)
feature_dataset_database = datasets.MIRFlickr(train=False, database=True, transform=datasets.mir_test_transform)
if settings.DATASET == "NUSWIDE":
train_dataset = datasets.NUSWIDE(train=True, transform=datasets.nus_train_transform)
test_dataset = datasets.NUSWIDE(train=False, database=False, transform=datasets.nus_test_transform)
database_dataset = datasets.NUSWIDE(train=False, database=True, transform=datasets.nus_test_transform)
feature_dataset = datasets.NUSWIDE(train=True, transform=datasets.nus_test_transform)
feature_dataset_test = datasets.NUSWIDE(train=False, database=False, transform=datasets.nus_test_transform)
feature_dataset_database = datasets.NUSWIDE(train=False, database=True, transform=datasets.nus_test_transform)
if settings.DATASET == "MSCOCO":
train_dataset = datasets.MSCOCO(train=True, transform=datasets.coco_train_transform)
test_dataset = datasets.MSCOCO(train=False, database=False, transform=datasets.coco_test_transform)
database_dataset = datasets.MSCOCO(train=False, database=True, transform=datasets.coco_test_transform)
feature_dataset = datasets.MSCOCO(train=True, transform=datasets.coco_test_transform)
feature_dataset_test = datasets.MSCOCO(train=False, database=False, transform=datasets.coco_test_transform)
feature_dataset_database = datasets.MSCOCO(train=False, database=True, transform=datasets.coco_test_transform)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=settings.BATCH_SIZE,
shuffle=True,
num_workers=settings.NUM_WORKERS,
drop_last=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=settings.BATCH_SIZE,
shuffle=False,
num_workers=settings.NUM_WORKERS)
database_loader = torch.utils.data.DataLoader(dataset=database_dataset,
batch_size=settings.BATCH_SIZE,
shuffle=False,
num_workers=settings.NUM_WORKERS)
feature_loader = torch.utils.data.DataLoader(dataset=feature_dataset,
batch_size=settings.BATCH_SIZE,
shuffle=False,
num_workers=settings.NUM_WORKERS)
feature_loader_test = torch.utils.data.DataLoader(dataset=feature_dataset_test,
batch_size=settings.BATCH_SIZE,
shuffle=False,
num_workers=settings.NUM_WORKERS)
feature_loader_database = torch.utils.data.DataLoader(dataset=feature_dataset_database,
batch_size=settings.BATCH_SIZE,
shuffle=False,
num_workers=settings.NUM_WORKERS)
# train dataset's random walk
FeatNet_I = ImgNet_V1(code_len=settings.CODE_LEN)
if settings.DATASET == "WIKI":
sample_num = len(feature_loader.dataset.label)
else:
sample_num = feature_loader.dataset.train_labels.shape[0]
global_imgs, global_txts = extract_features(FeatNet_I, feature_loader, feature_loader)
nnk = int(sample_num * settings.nnk)
nno = int(sample_num * settings.nnk * 1.5)
feature_img = global_imgs
feature_txt = global_txts
dim = sample_num
F_I = feature_img
S_I = F_I.mm(F_I.t())
# S_I = torch.cdist(F_I, F_I)
# S_I= torch.tanh(-settings.sssc * S_I)
F_T = feature_txt
S_T = F_T.mm(F_T.t())
# S_T= torch.cdist(F_T, F_T)
# S_T= torch.tanh(-settings.sssc * S_T)
settings.logger.info('dataset %s, nnk %.4f, nno %.4f, total epoch %d, eval interval %d, sim1 %.4f' % (settings.DATASET, settings.nnk, nno, settings.NUM_EPOCH, settings.EVAL_INTERVAL,settings.sim1))
S_high_crs = F.normalize(S_I).mm(F.normalize(S_T).t())
# 调参注释
if settings.DATASET == "MIRFlickr" :
sim1 = 0.5 * S_I + 0.1 * S_T + 0.4 * (S_high_crs + S_high_crs.t()) / 2
sim1 = sim1 * 1.4
# else settings.DATASET == "NUSWIDE":
elif settings.DATASET == "MSCOCO":
sim1 = 0.4 * S_I + 0.2 * S_T + 0.4 * (S_high_crs + S_high_crs.t()) / 2
sim1 = sim1 * 1.4
else:
sim1 = 0.4 * S_I + 0.3 * S_T + 0.3 * (S_high_crs + S_high_crs.t()) / 2
sim1 = sim1 * 1.4
# end
# else:
# sim1 = 0.4 * S_I + 0.3 * S_T + 0.3 * (S_high_crs + S_high_crs.t()) / 2
# sim = sim1 * 1.4
# final_sim = random_walk(sim1, dim)
# final_sim = sim1
# 调参注释
final_sim = sim1
del S_I, S_T, S_high_crs, sim1
# end
if settings.DATASET == "WIKI":
sample_num = len(feature_loader_test.dataset.label)
else:
sample_num = feature_loader_test.dataset.train_labels.shape[0]
global_imgs_test, global_txts_test = extract_features(FeatNet_I, feature_loader_test, feature_loader_test)
feature_img_test = global_imgs_test
feature_txt_test = global_txts_test
F_I_test = feature_img_test
S_I_test = F_I_test.mm(F_I_test.t())
# S_I_test = torch.cdist(F_I_test, F_I_test)
# S_I_test = torch.tanh(-settings.sssc * S_I_test)
F_T_test = feature_txt_test
S_T_test = F_T_test.mm(F_T_test.t())
# S_T_test = torch.cdist(F_T_test, F_T_test)
# S_T_test = torch.tanh(-settings.sssc * S_I_test)
S_high_crs_test = F.normalize(S_I_test).mm(F.normalize(S_T_test).t())
# 调参注释
if settings.DATASET == "MIRFlickr" :
sim1_test = 0.5 * S_I_test + 0.1 * S_T_test + 0.4 * (S_high_crs_test + S_high_crs_test.t()) / 2
sim1_test = sim1_test * 1.4
elif settings.DATASET == "MSCOCO":
sim1_test = 0.4 * S_I_test + 0.2 * S_T_test + 0.4 * (S_high_crs_test + S_high_crs_test.t()) / 2
sim1_test = sim1_test * 1.4
else:
sim1_test = 0.4 * S_I_test + 0.3 * S_T_test + 0.3 * (S_high_crs_test + S_high_crs_test.t()) / 2
sim1_test = sim1_test * 1.4
# end
# else:
# sim1 = 0.4 * S_I_test + 0.3 * S_T_test + 0.3 * (S_high_crs_test + S_high_crs_test.t()) / 2
# sim1_test = sim1 * 1.4
# final_sim_test = 2 * sim1_test -1
# 调参注释
final_sim_test = sim1_test
# end
# final_sim_test = S_high_crs_test * 1.4
# final_sim_test = (0.9 * S_I_test + 0.1 * S_T_test) * 1.4
# 调参注释
del S_I_test, S_T_test, S_high_crs_test, sim1_test
# end
#################### 数据库样本的G构建 ##############
# NUSWIDE 时不使用全局数据库样本
if settings.DATASET != 'NUSWIDE' and settings.DATASET != 'MSCOCO':
if settings.DATASET == "WIKI":
sample_num = len(feature_loader_test.dataset.label)
else:
sample_num = feature_loader_database.dataset.train_labels.shape[0]
global_imgs_database, global_txts_database = extract_features(FeatNet_I, feature_loader_database, feature_loader_database)
feature_img_database = global_imgs_database
feature_txt_database = global_txts_database
F_I_database = feature_img_database
S_I_database = F_I_database.mm(F_I_database.t())
# S_I_database = torch.cdist(F_I_database, F_I_database)
# S_I_database = torch.tanh(-settings.alpha * S_I_database)
F_T_database = feature_txt_database
S_T_database = F_T_database.mm(F_T_database.t())
# S_T_database = torch.cdist(F_T_database, F_T_database)
# S_T_database = torch.tanh(-settings.sssc * S_T_database)
S_high_crs_database = F.normalize(S_I_database).mm(F.normalize(S_T_database).t())
if settings.DATASET == "MIRFlickr":
sim1_database = 0.5 * S_I_database + 0.1 * S_T_database + 0.4 * (S_high_crs_database + S_high_crs_database.t()) / 2
sim1_database = sim1_database * 1.4
elif settings.DATASET == "NUSWIDE":
sim1_database = 0.4 * S_I_database + 0.3 * S_T_database + 0.3 * (S_high_crs_database + S_high_crs_database.t()) / 2
sim1_database = sim1_database * 1.4
else:
sim1 = 0.5 * S_I + 0.1 * S_T + 0.4 * (S_high_crs_database + S_high_crs_database.t()) / 2
sim1_database = sim1 * 1.4
final_sim_database = sim1_database
del S_I_database, S_T_database, S_high_crs_database, sim1_database
else:
final_sim_database = 0
# torch.cuda.empty_cache()
class Session:
def __init__(self):
self.logger = settings.logger
torch.cuda.set_device(settings.GPU_ID)
self.CodeNet_I = ImgNet_V1(code_len=settings.CODE_LEN)
self.FeatNet_I = ImgNet_V1(code_len=settings.CODE_LEN)
# self.CodeNet_I = ImgNet_ab(code_len=settings.CODE_LEN)
# self.FeatNet_I = ImgNet_ab(code_len=settings.CODE_LEN)
# self.CodeNet_I = torch.compile(ImgNet_V1(code_len=settings.CODE_LEN))
# self.FeatNet_I = torch.compile(ImgNet_V1(code_len=settings.CODE_LEN))
txt_feat_len = datasets.txt_feat_len
self.CodeNet_T = TxtNet_V1(code_len=settings.CODE_LEN, txt_feat_len=txt_feat_len)
# self.CodeNet_T = TxtNet_ab(code_len=settings.CODE_LEN, txt_feat_len=txt_feat_len)
# self.CodeNet_T = torch.compile(TxtNet_V1(code_len=settings.CODE_LEN, txt_feat_len=txt_feat_len))
if settings.DATASET == "WIKI":
self.opt_I = torch.optim.SGD(self.CodeNet_I.parameters(), lr=settings.LR_IMG, momentum=settings.MOMENTUM, weight_decay=settings.WEIGHT_DECAY)
if settings.DATASET == "MIRFlickr" or settings.DATASET == "NUSWIDE" or settings.DATASET == "MSCOCO":
self.opt_I = torch.optim.SGD(self.CodeNet_I.parameters(), lr=settings.LR_IMG, momentum=settings.MOMENTUM, weight_decay=settings.WEIGHT_DECAY)
self.opt_T = torch.optim.SGD(self.CodeNet_T.parameters(), lr=settings.LR_TXT, momentum=settings.MOMENTUM, weight_decay=settings.WEIGHT_DECAY)
self.final_sim = 2 * final_sim - 1.0
S = self.final_sim
## lambda
# S_temp = 2 * final_sim - 1.0
# S_temp = S_temp.cpu().numpy()
# S_ = generate_robust_S(S_temp, settings.alpha, settings.beta)
# self.final_sim = torch.FloatTensor(S_).cuda()
# S_temp= final_sim.cpu().numpy()
# S_ = generate_robust_S(S_temp, settings.alpha, settings.beta)
# self.final_sim = torch.FloatTensor(2 * S_ - 1.0).cuda()
# S= S.cpu().numpy()
# S = generate_robust_S(S, 2, 2.5)
# self.final_sim = torch.FloatTensor(S).cuda()
# 画图
def show_disturbtion(self):
S = 2*final_sim-1.0
S = S.cpu().numpy()
S = generate_robust_S(S, settings.alpha,settings.beta)
print(S.shape)
def train(self, epoch):
self.CodeNet_I.cuda().train()
self.FeatNet_I.cuda().eval()
self.CodeNet_T.cuda().train()
self.CodeNet_I.set_alpha(epoch)
self.CodeNet_T.set_alpha(epoch)
self.logger.info('Epoch [%d/%d], alpha for ImgNet: %.3f, alpha for TxtNet: %.3f' % (epoch + 1, settings.NUM_EPOCH, self.CodeNet_I.alpha, self.CodeNet_T.alpha))
for idx, (img, txt, labels, batch_ind) in enumerate(train_loader):
img = Variable(img.cuda())
txt = Variable(torch.FloatTensor(txt.numpy()).cuda())
S = self.final_sim[batch_ind, :]
S = S[:, batch_ind]
S = S.cuda()
# # 按批次生成 G
# H = load_feature_construct_H(S, K_neigs=settings.K)
# G = H
# G = torch.tensor(G, dtype=torch.float).cuda()
# G = build_G_from_S(G,S)
G = build_G_from_S(S, settings.K)
batch_size = img.size(0)
self.opt_I.zero_grad()
self.opt_T.zero_grad()
_, hid_I, code_I = self.CodeNet_I(img, G)
_, hid_T, code_T = self.CodeNet_T(txt, G)
# _, hid_I, code_I = self.CodeNet_I(img)
# _, hid_T, code_T = self.CodeNet_T(txt)
B_I = F.normalize(code_I)
B_T = F.normalize(code_T)
BI_BI = B_I.mm(B_I.t())
BT_BT = B_T.mm(B_T.t())
BI_BT = B_I.mm(B_T.t())
BT_BI = B_T.mm(B_I.t())
loss1 = F.mse_loss(BI_BI, S)
loss2 = (F.mse_loss(BI_BT, S) + F.mse_loss(BT_BI, S)) * 0.5
loss3 = F.mse_loss(BT_BT, S)
diagonal = BI_BT.diagonal()
all_1 = torch.rand((BT_BT.size(0))).fill_(1).cuda()
loss4 = F.mse_loss(diagonal, 1.5 * all_1)
# 固定temperature
diag_mat = torch.diag_embed(torch.diag(B_I.mm(B_T.t())))
diag_ele = torch.diag(B_I.mm(B_T.t()))
Numerator = torch.exp(diag_ele / settings.temperature)
S_I2T = torch.where(S < settings.threshold, BI_BT, 0)
# Dominator = torch.sum(torch.exp(( B_I.mm(B_T.t()) - diag_mat ) / settings.temperature ) - torch.eye(batch_size).cuda() , 1)
Dominator = torch.sum(torch.exp((S_I2T ) / settings.temperature ) - torch.eye(batch_size).cuda() , 1)
contra_loss1 = torch.sum(-torch.log(Numerator/Dominator))
diag_mat = torch.diag_embed(torch.diag(B_T.mm(B_I.t())))
diag_ele = torch.diag(B_T.mm(B_I.t()))
S_T2I = torch.where(S < settings.threshold, BT_BI, 0)
Numerator = torch.exp(diag_ele / settings.temperature)
Dominator = torch.sum(torch.exp((S_T2I ) / settings.temperature ) - torch.eye(batch_size).cuda() , 1)
contra_loss2 = torch.sum(-torch.log(Numerator/Dominator))
loss5 = 0.5 * (contra_loss1 + contra_loss2)
# # 固定temperature
# diag_mat = torch.diag_embed(torch.diag(B_I.mm(B_T.t())))
# diag_ele = torch.diag(B_I.mm(B_T.t()))
# Numerator = torch.exp(diag_ele / settings.temperature)
# Dominator = torch.sum(torch.exp(( B_I.mm(B_T.t()) - diag_mat ) / settings.temperature ) - torch.eye(batch_size).cuda() , 1)
# contra_loss1 = torch.sum(-torch.log(Numerator/Dominator))
# diag_mat = torch.diag_embed(torch.diag(B_T.mm(B_I.t())))
# diag_ele = torch.diag(B_T.mm(B_I.t()))
# Numerator = torch.exp(diag_ele / settings.temperature)
# Dominator = torch.sum(torch.exp(( B_T.mm(B_I.t()) - diag_mat ) / settings.temperature ) - torch.eye(batch_size).cuda() , 1)
# contra_loss2 = torch.sum(-torch.log(Numerator/Dominator))
# loss5 = 0.5 * (contra_loss1 + contra_loss2)
# loss = settings.LAMBDA1 * loss1 + 1 * loss2 + settings.LAMBDA2 * loss3 + settings.l4 * loss4
# loss = settings.LAMBDA1 * loss1 + settings.LAMBDA2 * loss3 + settings.l4 * loss4
loss = settings.LAMBDA1 * loss1 + settings.LAMBDA3 * loss2 + settings.LAMBDA2 * loss3 + settings.l4 * loss4 + settings.l5 * loss5
# writer.add_scalar('loss', loss, epoch * len(train_dataset) // settings.BATCH_SIZE + idx)
# record loss by tensorboardX
writer.add_scalar('loss1', settings.LAMBDA1 *loss1, epoch * len(train_dataset) // settings.BATCH_SIZE + idx)
writer.add_scalar('loss2', loss2, epoch * len(train_dataset) // settings.BATCH_SIZE + idx)
writer.add_scalar('loss3', settings.LAMBDA2 *loss3, epoch * len(train_dataset) // settings.BATCH_SIZE + idx)
writer.add_scalar('loss4', settings.l4 *loss4, epoch * len(train_dataset) // settings.BATCH_SIZE + idx)
# writer.add_scalar('loss5', settings.l5 *loss5, epoch * len(train_dataset) // settings.BATCH_SIZE + idx)
writer.add_scalar('loss', loss, epoch * len(train_dataset) // settings.BATCH_SIZE + idx)
loss.backward()
self.opt_I.step()
self.opt_T.step()
if (idx + 1) % (len(train_dataset) // settings.BATCH_SIZE / settings.EPOCH_INTERVAL) == 0:
self.logger.info('Epoch [%d/%d], Iter [%d/%d] Loss1: %.4f Loss2: %.4f Loss3: %.4f Loss4: %.4f Total Loss: %.4f'
% (epoch + 1, settings.NUM_EPOCH, idx + 1, len(train_dataset) // settings.BATCH_SIZE,
loss1.item(), loss2.item(), loss3.item(), loss4.item() ,loss.item()))
def eval(self,avgScore):
self.logger.info('--------------------Evaluation: Calculate top MAP-------------------')
# Change model to 'eval' mode (BN uses moving mean/var).
self.CodeNet_I.eval().cuda()
self.CodeNet_T.eval().cuda()
if settings.DATASET == "WIKI":
re_BI, re_BT, re_L, qu_BI, qu_BT, qu_L = compress_wiki(database_loader, test_loader, self.CodeNet_I, self.CodeNet_T, database_dataset, test_dataset)
# 注意此处的compress方法与DJSRH有差异,此处需传入数据库和检索集样本的G
if settings.DATASET == "MIRFlickr" or settings.DATASET == "WIKI":
re_BI, re_BT, re_L, qu_BI, qu_BT, qu_L = compress(database_loader, test_loader, self.CodeNet_I, self.CodeNet_T, database_dataset, test_dataset, final_sim_database, final_sim_test)
if settings.DATASET == "NUSWIDE" or settings.DATASET == "MSCOCO":
re_BI, re_BT, re_L, qu_BI, qu_BT, qu_L = compress_nus(database_loader, test_loader, self.CodeNet_I, self.CodeNet_T, database_dataset, test_dataset, final_sim_test)
MAP_I2T = calculate_top_map(qu_B=qu_BI, re_B=re_BT, qu_L=qu_L, re_L=re_L, topk=50)
# self.logger.info('MAP of Image to Text: %.3f,' % (MAP_I2T))
# MAP_I2T = calculate_map(qu_B=qu_BI, re_B=re_BT, qu_L=qu_L, re_L=re_L)
MAP_T2I = calculate_top_map(qu_B=qu_BT, re_B=re_BI, qu_L=qu_L, re_L=re_L, topk=50)
# MAP_T2I = calculate_map(qu_B=qu_BT, re_B=re_BI, qu_L=qu_L, re_L=re_L)
# MAP_T2I = calculate_top_recall(qu_B=qu_BT, re_B=re_BI, qu_L=qu_L, re_L=re_L, topk=50)
# MAP_I2T = calculate_top_recall(qu_B=qu_BI, re_B=re_BT, qu_L=qu_L, re_L=re_L, topk=50)
# if settings.DATASET == "WIKI":
# re_BI, re_BT, re_L, qu_BI, qu_BT, qu_L = compress_wiki(database_loader, test_loader, self.CodeNet_I, self.CodeNet_T, database_dataset, test_dataset)
# if settings.DATASET == "MIRFlickr" or settings.DATASET == "NUSWIDE":
# re_BI, re_BT, re_L, qu_BI, qu_BT, qu_L = compress_ab(database_loader, test_loader, self.CodeNet_I, self.CodeNet_T, database_dataset, test_dataset)
# MAP_I2T = calculate_top_map(qu_B=qu_BI, re_B=re_BT, qu_L=qu_L, re_L=re_L, topk=50)
# MAP_T2I = calculate_top_map(qu_B=qu_BT, re_B=re_BI, qu_L=qu_L, re_L=re_L, topk=50)
# draw_pr_curve(qu_B=qu_BT, re_B=re_BI, qu_L=qu_L, re_L=re_L, topk= -1)
# self.logger.info('MAP of Image to Text: %.3f, MAP of Text to Image: %.3f avgI2T: %.4f avgT2I: %.4f bestPair:(%.3f,%.3f) evalNum:%d' % (MAP_I2T, MAP_T2I,avgScore[0],avgScore[1],avgScore[3],avgScore[4],avgScore[2]))
# draw_PN_curve(qu_B=qu_BT, re_B=re_BI, qu_L=qu_L, re_L=re_L, max_topK=5000, save_name='PN_T2I')
# draw_PN_curve(qu_B=qu_BI, re_B=re_BT, qu_L=qu_L, re_L=re_L, max_topK=5000, save_name='PN_I2T')
avgScore[0] = (avgScore[0] * avgScore[2] + MAP_I2T)/(avgScore[2]+1)
avgScore[1] = (avgScore[1] * avgScore[2] + MAP_T2I)/(avgScore[2]+1)
avgScore[2] += 1
if MAP_I2T + MAP_T2I >= avgScore[3] + avgScore[4]:
avgScore[3] = MAP_I2T
avgScore[4] = MAP_T2I
# name = ('%s_%dbit_%dbatch_best_checkpoint.pth' %(settings.DATASET, settings.CODE_LEN, settings.BATCH_SIZE))
# ckp_path = osp.join(settings.MODEL_DIR, name)
# obj = {
# 'ImgNet': self.CodeNet_I.state_dict(),
# 'TxtNet': self.CodeNet_T.state_dict(),
# 'step': avgScore[2] + 1,
# }
# torch.save(obj, ckp_path)
# self.logger.info('**********Save the trained model successfully.**********')
self.logger.info('K = %f, MAP of Image to Text: %.3f, MAP of Text to Image: %.3f avgI2T: %.4f avgT2I: %.4f bestPair:(%.3f,%.3f) evalNum:%d' % (settings.K, MAP_I2T, MAP_T2I,avgScore[0],avgScore[1],avgScore[3],avgScore[4],avgScore[2]))
self.logger.info('--------------------------------------------------------------------')
# record MAP by tensorboardX
writer.add_scalar('MAP_I2T', MAP_I2T, avgScore[2])
writer.add_scalar('MAP_T2I', MAP_T2I, avgScore[2])
# # write to csv
with open('HCAC/result/nus.csv', 'a') as f:
f.write('%s,%.3f,%.3f,%.3f,%.3f,%.3f, %.3f, %.3f\n' % (settings.DATASET,settings.K, settings.threshold, settings.l4,settings.l5,avgScore[3],avgScore[4], avgScore[3]+avgScore[4]))
def save_checkpoints(self, step, file_name='latest.pth'):
ckp_path = osp.join(settings.MODEL_DIR, file_name)
obj = {
'ImgNet': self.CodeNet_I.state_dict(),
'TxtNet': self.CodeNet_T.state_dict(),
'step': step,
}
torch.save(obj, ckp_path)
self.logger.info('**********Save the trained model successfully.**********')
def load_checkpoints(self, file_name='%s_%dbit_%dbatch_best_checkpoint.pth' %(settings.DATASET, settings.CODE_LEN, settings.BATCH_SIZE)):
ckp_path = osp.join(settings.MODEL_DIR, file_name)
try:
obj = torch.load(ckp_path, map_location=lambda storage, loc: storage.cuda())
self.logger.info('**************** Load checkpoint %s ****************' % ckp_path)
except IOError:
self.logger.error('********** No checkpoint %s!*********' % ckp_path)
return
self.CodeNet_I.load_state_dict(obj['ImgNet'])
self.CodeNet_T.load_state_dict(obj['TxtNet'])
self.logger.info('********** The loaded model has been trained for %d epochs.*********' % obj['step'])
def main():
# for random_id in range(30,50,1):
random_id = 30
torch.manual_seed(random_id)
torch.cuda.manual_seed_all(random_id)
settings.logger.info('random seed id: %d'%random_id)
settings.logger.info('%.4f loss1, 1 loss2, %.4f loss3, %.4f loss4, %d bit, map@50!!!' % (settings.LAMBDA1, settings.LAMBDA2, settings.l4, settings.CODE_LEN))
sess = Session()
avgScore = [0.0,0.0,0,0,0]
if settings.EVAL == True:
sess.load_checkpoints()
sess.eval(avgScore)
else :
for epoch in range(settings.NUM_EPOCH):
# train the Model
sess.train(epoch)
# eval the Model
if (epoch + 1) % settings.EVAL_INTERVAL == 0:
sess.eval(avgScore)
# save the model
# if epoch + 1 == settings.NUM_EPOCH:
# # sess.save_checkpoints(step=epoch+1)
# sess.eval(avgScore, is_eval=False)
def _main():
torch.manual_seed(30)
torch.cuda.manual_seed_all(30)
settings.logger.info('random seed id: %d'%30)
settings.logger.info('%.4f loss1, 1 loss2, %.4f loss3, %.4f loss4, %d bit, map@50!!!' % (settings.LAMBDA1, settings.LAMBDA2, settings.l4, settings.CODE_LEN))
sess = Session()
avgScore = [0.0,0.0,0,0,0]
if settings.EVAL == True:
sess.load_checkpoints()
sess.eval(avgScore)
else :
for epoch in range(100):
# train the Model
sess.train(epoch)
# settings.sssc = math.pow((1.0 * epoch + 1.0), 0.5)
# eval the Model
if epoch > 19 and epoch%5==0:
sess.eval(avgScore)
# save the model
# if epoch + 1 == settings.NUM_EPOCH:
# sess.save_checkpoints(step=epoch+1)
def show():
torch.manual_seed(30)
torch.cuda.manual_seed_all(30)
settings.logger.info('random seed id: %d'%30)
settings.logger.info('%.4f loss1, 1 loss2, %.4f loss3, %.4f loss4, %d bit, map@50!!!' % (settings.LAMBDA1, settings.LAMBDA2, settings.l4, settings.CODE_LEN))
sess = Session()
sess.show_disturbtion()
if __name__ == '__main__':
# for i in np.arange(-1,1,0.1):
# settings.threshold = i
# for j in np.arange(1,20,1):
# settings.K = j
main()
# for i in range(0,4):
# settings.CODE_LEN = 2**i * 16
# lambda
# for i in np.arange(5.5,6.5,0.5):
# settings.beta = i
# _main()
# for i in np.arange(0,5.5,0.5):
# settings.alpha = i
# _main()
# for a in np.arange(0,1,0.1):
# for b in np.arange(0, 1-a, 0.1):
# settings.a = a
# settings.b = b
# settings.c = 1-a-b
# final_sim = cal_sim(S_I=S_I, S_T=S_T, S_F=S_high_crs) * 1.4
# final_sim_test = cal_sim(S_I=S_I_test, S_T=S_T_test, S_F=S_high_crs_test) * 1.4
# for i in np.arange(1,8, 1):
# settings.K = i
# _main()
# for j in np.arange(1,5,0.25):
# settings.beta = j
# for k in np.arange(1,4,1):
# settings.K = k
# _main()
# for settings.LAMBDA1 in np.arange(0.1,1,0.1):
# for settings.LAMBDA2 in np.arange(0.1,1,0.1):
# for settings.LAMBDA3 in np.arange(1,3,1):
# for settings.l4 in np.arange(0.1,1,0.1):
# _main()
# main()
# show()
# show()
# show()
# for i in np.arange(0.1,1,0.1):
# settings.A = i
# for j in np.arange(0.1,1-i,0.1):
# settings.B = j
# settings.C = 1 - i - j
# if settings.A + settings.B + settings.C == 1:
# _main()
# for settings.LAMBDA1 in (0.1, 0.5, 1):
# for settings.LAMBDA2 in (0.1, 0.5, 1):
# for settings.l4 in np.arange(0.1, 0.5, 0.1):
# for settings.l5 in (0.005,0.0005,0.00005):
# _main()
# main()
# show()
# _main()
# for i in [128]:
# settings.CODE_LEN = i
# _main()
# # show()
# for i in [2,3,4,5,6,7,8,9]:
# settings.K = i
# _main()
# mir
# right mean: -0.65399855
# right std: 0.24575287
# nus
# right mean: -0.6359999
# right std: 0.30658692
# show()
# for i in np.arange(0,5,0.5):
# settings.threshold = -0.6 + i * 0.24
# # settings.threshold = -0.6 + i * 0.3
# # _main()
# for i in [16, 32, 64, 128]:
# settings.CODE_LEN = i
# _main()