-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_OIA.py
157 lines (135 loc) · 6.46 KB
/
train_OIA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
Implementation of Training
"""
import argparse
import yaml
import datetime
import time
import torch
import pickle
from torch.utils.data import DataLoader
from dataset.OIADataset import BDDOIA
from model.GetModel import get_model
from utils.TrainingUtils import create_lr_scheduler, train_one_epoch, evaluate
def main(args):
""" Main Function """
# config
config_file = f"./{args.dataset}_config.yaml"
with open(f"{config_file}", 'r') as f:
config = yaml.safe_load(f)
# device
device = torch.device(config["device"] if torch.cuda.is_available() else "cpu")
# log file
now_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
log_file = f"./log/log_{now_time}.txt"
# label embedding
word_embedding_path = config["word_embedding_path"]
with open(f"{word_embedding_path}", "rb") as f:
label_embedding = pickle.load(f).to(device)
# adj information
adj_file_path = config["adj_file_path"]
with open(f"{adj_file_path}", "rb") as f:
adj_info = pickle.load(f)
edge_attr = adj_info["arr_tensor"].to(device)
adj_COO = adj_info["adj_COO"].to(device)
weight_tensor = adj_info["weight_tensor"].to(device)
# prepare data
dataset_train = BDDOIA(imageRoot = config["data"]["bddoia_data"],
actionRoot = config["data"]["train_action"],
reasonRoot = config["data"]["train_reason"],
)
dataset_val = BDDOIA(imageRoot = config["data"]["bddoia_data"],
actionRoot = config["data"]["val_action"],
reasonRoot = config["data"]["val_reason"],
)
dataloader_train = DataLoader(dataset_train,
batch_size=config["optimizer"]["batch_size"],
shuffle=True,
pin_memory=True,
drop_last=True,
num_workers=4)
dataloader_val = DataLoader(dataset_val,
batch_size=config["optimizer"]["batch_size"],
pin_memory=True,
drop_last=True,
num_workers=4)
# get model
model = get_model(config)
model.to(device)
params_to_optimize = [
{"params": [p for p in model.backbone.parameters() if p.requires_grad]},
{"params": [p for p in model.cbam.parameters() if p.requires_grad]},
{"params": [p for p in model.classifier.parameters() if p.requires_grad]},
{"params": [p for p in model.neck.parameters() if p.requires_grad]},
{"params": [p for p in model.attention_module.parameters() if p.requires_grad]},
{"params": [p for p in model.gnn.parameters() if p.requires_grad]},
{"params": [p for p in model.common_classifier_head.parameters() if p.requires_grad]},
{"params": [p for p in model.classifier_head_action.parameters() if p.requires_grad]},
{"params": [p for p in model.classifier_head_reason.parameters() if p.requires_grad]},
]
# optimizer
optimizer = torch.optim.SGD(params_to_optimize,
lr=config["optimizer"]["learning_rate"],
momentum=config["optimizer"]["momentum"],
weight_decay=config["optimizer"]["weight_decay"],
)
if args.amp:
scaler = torch.cuda.amp.GradScaler()
else:
scaler = None
epochs = config["optimizer"]["num_epoches"]
iterations = len(dataloader_train)
lr_scheduler = create_lr_scheduler(optimizer, iterations, epochs, warmup=True)
# training
start_time = time.time()
for epoch in range(epochs):
total_loss, lr = train_one_epoch(model,
optimizer,
dataloader_train,
label_embedding,
adj_COO,
edge_attr,
weight_tensor,
device,
epoch,
lr_scheduler=lr_scheduler,
print_freq=args.print_freq,
scaler=scaler
)
# total_loss, lr = 0, 0
val_res = evaluate(model, dataloader_val, label_embedding, adj_COO, edge_attr, weight_tensor, device)
# log results
train_info = f"[epoch: {epoch}]\n" \
f"train_loss: {total_loss:.4f}\n" \
f"lr: {lr:.6f}\n"
val_info = f'Val_loss: {val_res["Val_loss"]}\n' \
f'Action_overall: {val_res["Action_overall"]}\n' \
f'Reason_overall: {val_res["Reason_overall"]}\n' \
f'F1_action: {val_res["F1_action"]}\n' \
f'F1_action_average: {val_res["F1_action_average"]}\n' \
f'F1_reason: {val_res["F1_reason"]}\n' \
f'F1_reason_average: {val_res["F1_reason_average"]}\n'
total_metric = float(val_res["Action_overall"]) + \
float(val_res["Reason_overall"]) + \
float(val_res["F1_action_average"]) + \
float(val_res["F1_reason_average"])
with open(log_file, "a") as f:
f.write(train_info + val_info + f"total_metric: {total_metric} \n\n\n")
# save model
save_file = {"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch}
if args.amp:
save_file["scaler"] = scaler.state_dict()
torch.save(save_file, f"./save_model/model_{epoch}.pth")
total_time = time.time() - start_time
total_time = datetime.timedelta(seconds=int(total_time))
print(f"Finish training with {total_time}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--dataset", default="bddoia", type=str, help="Dataset")
parser.add_argument("--amp", default=True, type=bool, help="Whether Use torch.cuda.amp")
parser.add_argument('--print_freq', default=100, type=int, help='Print frequency')
args = parser.parse_args()
main(args)