-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb_grating_to_cif.py
312 lines (245 loc) · 11.9 KB
/
b_grating_to_cif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 29 14:02:18 2021
@author: Xcz
"""
# %%
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from skimage import measure, data, color
import time
import inspect
def write_out_cif(context_core, location=os.path.dirname(os.path.abspath(__file__)),
file_name="Grating_appr_contours", is_txt=0, is_add_outline=1, ):
context_front = \
'''
DS 1 2 40;\n
9 Cell0;\n
'''
if context_core[:6] != "L CPG;":
# print(context_core[:6])
context_core = "L CPG;\n" + context_core
context_back = \
'''
DF;\n
E;\n
'''
with open("外框.txt", "r") as f:
context_outline = f.read() if is_add_outline == 1 else ""
context = context_front + context_core + context_outline + context_back
suffix = ".txt" if is_txt == 1 else ".cif"
path = location + "\\" + file_name + suffix
with open(path, "w") as f:
f.write(context)
def grating_to_cif(size_PerCIF_Unit=1 / 2000,
size_pattern=100, size_PerPixel=0.1,
# %%
is_transverse=0, is_positive=1, is_transparent=1,
is_reverse=0,
# %%
tolerance=0.02, linewidth=0.5, **kwargs):
def reverse(x):
return np.array(x == 0, dtype=np.uint8()) * 255
size_pattern_y = size_pattern # unit: um
size_pattern_x = kwargs.get("size_pattern_y", size_pattern) # unit: um
if is_transverse == 1:
size_pattern_x, size_pattern_y = size_pattern_y, size_pattern_x
size_PerPixel_y = size_PerPixel # unit: um / pixel,横向分辨率
size_PerPixel_x = size_PerPixel # unit: um / pixel,纵向分辨率
width_y = int(size_pattern_y / size_PerPixel_y) # 横向 像素点个数
hight_x = int(size_pattern_x / size_PerPixel_x) # 纵向 像素点个数
CifUnits_PerPixel = size_PerPixel / size_PerCIF_Unit # unit: cif_unit / pixel,打印 分辩率
# %% 生成二值测试图像
# img=color.rgb2gray(data.horse())
# location = r'D:\Users\ZML\Desktop'
location = os.path.dirname(os.path.abspath(__file__))
img = cv2.imdecode(np.fromfile(location + "\\Grating.png", dtype=np.uint8), 0) # 按 绝对路径 + 灰度图 读取图片
# img = cv2.imread(location + "\\Grating.png", 0) # 按 绝对路径 + 灰度图 读取图片
img = np.array(img, dtype=bool) # 将 灰度图 转换为 布尔图
# %% 检测所有图形的轮廓
contours = measure.find_contours(img, 0.5)
global appr_contours
appr_contours = []
# %% 单线程
# tick_start = time.time()
# for i in range(len(contours)):
# appr_contours.append(measure.approximate_polygon(contours[i], tolerance=tolerance))
# print("{} b.1. --> consume time: {} s".format(inspect.stack()[1][3], time.time() - tick_start))
# %% 多线程 begin
def fun1(for_th, fors_num, *arg, **kkwargs, ):
return measure.approximate_polygon(contours[for_th], tolerance=tolerance)
def fun2(for_th, fors_num, appr_contour, *args, **kkwargs, ):
global appr_contours
appr_contours.append(appr_contour)
from fun_thread import my_thread, noop
my_thread(10, len(contours),
fun1, fun2, noop,
is_ordered=1, add_level=-1, **kwargs, )
# %%
is_plot = kwargs.get("is_plot", 0)
if is_plot == 1:
dpi = 100
size_fig_y = width_y / dpi
size_fig_x = hight_x / dpi
# print(size_fig_x, size_fig_y)
# 绘制轮廓
fig, axes = plt.subplots(2, 2, figsize=(3 * size_fig_y, 3 * size_fig_x), dpi=dpi)
ax0, ax1, ax2, ax3 = axes.ravel()
ax0.imshow(img, plt.cm.gray)
ax0.set_title('original image')
rows, cols = img.shape
# print(rows, cols)
ax1.axis([0, cols, rows, 0])
for n, contour in enumerate(contours):
ax1.plot(contour[:, 1], contour[:, 0], linewidth=linewidth)
# ax1.axis('image')
ax1.set_title('contours')
ax2.axis([0, cols, rows, 0])
# %%
global context_core
context_core = ""
# %% 单线程
# tick_start = time.time()
# for n, appr_contour in enumerate(appr_contours):
# # print(appr_contour[0][0])
# # print(len(appr_contour))
# context_core += "P"
# for i in range(len(appr_contour)):
# context_core += " " + str(int(appr_contour[-(i + 1)][0] * CifUnits_PerPixel)) \
# + "," + str(int(appr_contour[-(i + 1)][1] * CifUnits_PerPixel))
# context_core += ";" + "\n"
# if is_plot == 1:
# ax2.plot(appr_contour[:, 1], appr_contour[:, 0], linewidth=linewidth)
# print("{} b.2. --> consume time: {} s".format(inspect.stack()[1][3], time.time() - tick_start))
def fun1(for_th, fors_num, *arg, **kkwargs, ):
appr_contour = appr_contours[for_th]
context_core_i = "P"
for i in range(len(appr_contour)):
context_core_i += " " + str(int(appr_contour[-(i + 1)][0] * CifUnits_PerPixel)) \
+ "," + str(int(appr_contour[-(i + 1)][1] * CifUnits_PerPixel))
context_core_i += ";" + "\n"
return context_core_i
def fun2(for_th, fors_num, context_core_i, *args, **kkwargs, ):
global context_core
context_core += context_core_i
# %%
appr_contour = appr_contours[for_th]
if is_plot == 1:
ax2.plot(appr_contour[:, 1], appr_contour[:, 0], linewidth=linewidth)
from fun_thread import my_thread, noop
my_thread(10, len(appr_contours),
fun1, fun2, noop,
is_ordered=1, **kwargs, )
# print(appr_contours[0][0][0])
# %%
if is_plot == 1:
# ax2.axis('image')
ax2.set_title('appr_contours')
ax3.axis([0, cols, rows, 0])
ax3.plot(appr_contours[-2][:, 1], appr_contours[-2][:, 0], linewidth=linewidth)
# ax3.plot(appr_contours[0][:, 0], appr_contours[0][:, 1], linewidth=linewidth)
ax3.plot(appr_contours[0][:, 1], appr_contours[0][:, 0], linewidth=linewidth)
ax3.plot(appr_contours[-3][:, 1], appr_contours[-3][:, 0], linewidth=linewidth)
ax3.plot(appr_contours[-1][:, 1], appr_contours[-1][:, 0], linewidth=linewidth)
# ax3.axis('image')
ax3.set_title('appr_contours[-2],[0],[-3],[1]')
plt.show()
# %%
# #%% 生成 image_contours
# image_contours = np.ones((width_y,hight_x,4),dtype='uint8') * 255 # 整体定义,不需要大量内存
# image_appr_contours = np.ones((width_y,hight_x,4),dtype='uint8') * 255 # 整体定义,不需要大量内存
# # RGB = 255,255,255,白色,全区域,均不调制;(这里可以 不初始化 RGB)
# # 不透明度 alpha = 255,完全显示 RGB 三色
# array_contours = contours[0]
# for n in range(len(contours) - 1):
# array_contours = np.vstack((array_contours, contours[n+1]))
# array_contours = np.uint(array_contours / img.shape[0] * width_y)
# # array_contours = np.array(set(array_contours.tolist())) # 转换为 list 过滤 重复元素 后,再转回来
# # 但 array_contours 中的每个元素 又是个 list,而 list 没有 hash 值,就没法 set 去重
# array_contours = np.unique(array_contours, axis=0)
# array_contours = array_contours.T
# for k in range(3):
# image_contours[array_contours[0], array_contours[1], k] = 0
# # for i in range(len(array_contours)):
# # for k in range(3):
# # image_contours[int(array_contours[i][0]), int(array_contours[i][1]), k] = 0
# # # image 中,边框 涂成 黑色 (0,0,0)
# if is_positive != 1: # 如果 负片,则 黑白 反转
# image_contours = 255 - image_contours
# if is_transparent == 1: # 如果 想把 白色 弄成 透明的
# image_contours[:, :, 3] = reverse(image_contours[:, :, 0])
# #%%
# #绘图:image_contours
# plt.figure(figsize=(size_fig, size_fig), dpi=dpi)
# plt.axis('off')
# plt.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0, hspace = 0, wspace = 0)
# plt.margins(0,0)
# plt.imshow(image_contours)
# plt.savefig(location + "\\Grating_contours.svg", is_transparent = True, pad_inches=0)
# plt.savefig(location + "\\Grating_contours.png", is_transparent = True, pad_inches=0)
# plt.show()
# #%% 生成 image_appr_contours
# array_appr_contours = appr_contours[0]
# for n in range(len(appr_contours) - 1):
# array_appr_contours = np.vstack((array_appr_contours, appr_contours[n+1]))
# # array_appr_contours = np.array(appr_contours, dtype=int)
# array_appr_contours = np.uint(array_appr_contours / img.shape[0] * width_y)
# array_appr_contours = np.unique(array_appr_contours, axis=0)
# array_appr_contours = array_appr_contours.T
# # array_appr_contours.astype(np.int32) # 等价于 上面的 np.uint8(...) 单独给 每个数据 改变 数据类型,不会改变 整个 数组 的 数据类型
# # array_appr_contours.dtype = np.int32 # 这样做 虽然 会改变 整个 数组 的 数据类型, 但是 通过单独把 每个 float64 拆成了 8个 unit8 实现的
# for k in range(3):
# image_appr_contours[array_appr_contours[0], array_appr_contours[1], k] = 0
# # for i in range(len(array_appr_contours)):
# # for k in range(3):
# # image_appr_contours[int(array_appr_contours[i][0]), int(array_appr_contours[i][1]), k] = 0
# # # image 中,边框 涂成 黑色 (0,0,0)
# if is_positive != 1: # 如果 负片,则 黑白 反转
# image_appr_contours = 255 - image_appr_contours
# if is_transparent == 1: # 如果 想把 白色 弄成 透明的
# image_appr_contours[:, :, 3] = reverse(image_appr_contours[:, :, 0])
# #%%
# #绘图:image_appr_contours
# plt.figure(figsize=(size_fig, size_fig), dpi=dpi)
# # 图中图的大底板图,长=10英寸,宽=10英寸,每英寸300像素,共3000*3000像素
# plt.axis('off') # 去掉 外侧 框线,只是 在 spyder 中去掉
# # plt.xticks([]) # 去掉 横坐标值
# # plt.yticks([]) # 去掉 纵坐标值
# # plt.gca().xaxis.set_major_locator(plt.NullLocator())
# # plt.gca().yaxis.set_major_locator(plt.NullLocator())
# plt.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0, hspace = 0, wspace = 0)
# plt.margins(0,0)
# plt.imshow(image_appr_contours)
# # plt.imshow(array_yx, 'gray')
# # plt.imshow(array_yxl_cos_step[l], 'gray'), \
# # plt.title("pattern_yx, l = %s" % (l), fontsize = 10)
# # image_yx = Image.fromarray(array_yx)
# # is_transparent = image_yx.convert('RGBA')
# plt.savefig(location + "\\Grating_appr_contours.svg", is_transparent = True, pad_inches=0)
# plt.savefig(location + "\\Grating_appr_contours.png", is_transparent = True, pad_inches=0) # dpi=100 和上文相对应 pixel尺寸/dpi=inch尺寸
# # cv2.imencode('.png', array_xy)[1].tofile(location)
# plt.show() # 此处顺序不能弄反 imshow(),savefig(),show()
# #plt.clf() #plt.clf()的作用:用于批量存储图片时 每一次显示图片并保存以后,释放图窗,接受下一个图片显示和存储
# %%
# 输出 txt
from b_grating_to_cif import write_out_cif
write_out_cif(context_core)
if __name__ == '__main__':
kwargs = \
{"size_PerCIF_Unit": 1 / 2000,
"size_pattern": 3000, "size_PerPixel": 1,
"size_pattern_y": 10000, # size_pattern / size_PerPixel = 65536 = 2 ^ 16 是上限
# %%
"is_transverse": 1, "is_positive": 1, "is_transparent": 1,
"is_reverse": 1,
# %%
"is_plot": 0,
# %%
"kwargs_seq": 0, "root_dir": r'1',
"is_remove_root_dir": 1,
}
from fun_global_var import init_GLV_DICT
init_GLV_DICT(**kwargs)
grating_to_cif(**kwargs)