-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha_CGH_grating.py
262 lines (224 loc) · 9.86 KB
/
a_CGH_grating.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 29 14:02:18 2021
@author: Xcz
"""
# %%
# from __future__ import division
# #控制台 初始化时,设置了 会加载 这部分语句,但 .py 文件不会,所以得 额外 提前声明一下
# from sympy import *
# x, y, z, t = symbols('x y z t')
# k, m, n = symbols('k m n', integer=True)
# f, g, h = symbols('f g h', cls=Function)
# init_printing(use_latex='svg')
import os
import numpy as np
import math
from matplotlib import pyplot as plt
import cv2
from PIL import Image
import gc
import time
import inspect
Image.MAX_IMAGE_PIXELS = 10E10 # Image 的 默认参数 无法处理那么大的图片
def CGH_grating(l=1, structure_xy_mode="x",
m_x=-1, T_x=10, Duty_Cycle_x=0.5,
m_y=-1, T_y=10, Duty_Cycle_y=0.5,
# %%
size_pattern=100, size_PerPixel=0.1,
is_transverse=0, is_positive=1, is_transparent=1,
is_reverse=0, **kwargs):
# l = 1
# T_x = 10 # unit: um
# m_x = -1
# size_pattern = 8.5 * T_x # unit: um 如果 只是 示意图,填 10 或 8.5 倍 的 周期 T_x 左右,即 8.5 * T_x 即可
# size_PerPixel = 0.1 # unit: um / pixel,分辨率
# is_transverse = 0 # 如果 要生成 tif 文件,则需要 转置 is_transverse = 1;否则 若想看 正向,则 不转置
# is_positive = 1
# is_transparent = 1 # is_transparent = 0 是指 不论黑白 都保留 不透明
# Duty_Cycle_x = 0.5 # -1 ~ 1,正表示 is_positive 片 中 黑色 (R,G,B,A) = (0,0,0,1) 调制(畴反转,chi_2 < 0)区域 占空比 更小
# 0.5 意味着 1/3 占空比, -0.5 意味着 2/3 占空比
def image_border(src, dst, loc='a', width=3, color=(0, 0, 0, 255)):
'''
src: (str) 需要加边框的图片路径
dst: (str) 加边框的图片保存路径
loc: (str) 边框添加的位置, 默认是'a'(
四周: 'a' or 'all'
上: 't' or 'top'
右: 'r' or 'rigth'
下: 'b' or 'bottom'
左: 'l' or 'left'
)
width: (int) 边框宽度 (默认是3)
color: (int or 3-tuple) 边框颜色 (默认是0, 表示黑色; 也可以设置为三元组表示RGB颜色)
'''
# 读取图片
img_ori = Image.open(src)
w = img_ori.size[0]
h = img_ori.size[1]
# 添加边框
if loc in ['a', 'all']:
w += 2 * width
h += 2 * width
img_new = Image.new('RGBA', (w, h), color)
img_new.paste(img_ori, (width, width))
elif loc in ['t', 'top']:
h += width
img_new = Image.new('RGBA', (w, h), color)
img_new.paste(img_ori, (0, width, w, h))
elif loc in ['r', 'right']:
w += width
img_new = Image.new('RGBA', (w, h), color)
img_new.paste(img_ori, (0, 0, w - width, h))
elif loc in ['b', 'bottom']:
h += width
img_new = Image.new('RGBA', (w, h), color)
img_new.paste(img_ori, (0, 0, w, h - width))
elif loc in ['l', 'left']:
w += width
img_new = Image.new('RGBA', (w, h), color)
img_new.paste(img_ori, (width, 0, w, h))
else:
pass
# 保存图片
img_new.save(dst)
# def hello():
# print("hello world")
# hello()
# expr=(x+y)**3
# print(expr)
# print(expr.expand())
# expr
# expr.expand()
# img = cv2.imread(r'D:\Users\ZML\Desktop\Grating.png', 0) # 按绝对路径读取图片
def step(U, Duty_Cycle):
return (U > (2 * is_positive - 1) * np.cos(Duty_Cycle * np.pi)).astype(np.int8())
# 如果 不是 is_positive == 1,则 negative == 1 , 则 需要用到 如下 reverse 函数
# is_transparent == 1 也会用到 以下 透明度 反转 函数
def reverse(x):
return np.array(x == 0, dtype=np.uint8()) * 255
# if x != 0:
# return 0
# else:
# return 255
# %%
# 生成二值测试图像
G_x = 2 * math.pi * m_x / T_x # unit: /um
G_y = 2 * math.pi * m_y / T_y # unit: /um
size_pattern_y = size_pattern # unit: um
size_pattern_x = kwargs.get("size_pattern_y", size_pattern) # unit: um
size_PerPixel_y = size_PerPixel # unit: um / pixel,横向分辨率
size_PerPixel_x = size_PerPixel # unit: um / pixel,纵向分辨率
width_y = int(size_pattern_y / size_PerPixel_y) # 横向 像素点个数
hight_x = int(size_pattern_x / size_PerPixel_x) # 纵向 像素点个数
# if is_transverse == 1:
# width_y, hight_x = hight_x, width_y
array_yx = np.ones((hight_x, width_y, 4), dtype='uint8') # 整体定义,不需要大量内存
# array_yx = np.zeros((width_y,hight_x),dtype='float32') # 整体定义,需要大量内存
array_yx = array_yx * 255 # RGB = 255,255,255,白色,全区域,均不调制;(这里可以 不初始化 RGB)
# 不透明度 alpha = 255,完全显示 RGB 三色
center_y = width_y // 2
center_x = hight_x // 2
# %%
tick_start = time.time()
X, Y = np.meshgrid([i for i in range(width_y)], [j for j in range(hight_x)])
center_x = center_x if is_transverse == 1 else - center_x
Mesh_centered = np.dstack((X, Y)) - (center_y, center_x)
y_relative = Mesh_centered[:, :, 0] * size_PerPixel_y # unit: um
x_relative = Mesh_centered[:, :, 1] * size_PerPixel_x # unit: um
del X, Y, Mesh_centered
gc.collect()
# %%
OAM_phase = l * (np.arctan2(x_relative, y_relative) + math.pi) if l != 0 else 0
if structure_xy_mode == 'x':
CGH = step(np.cos(G_x * y_relative - OAM_phase), Duty_Cycle_x)
elif structure_xy_mode == 'y':
CGH = step(np.cos(G_y * x_relative - OAM_phase), Duty_Cycle_y)
elif structure_xy_mode == 'xy':
CGH = step(np.cos(G_x * y_relative + G_y * x_relative - OAM_phase), Duty_Cycle_x)
elif structure_xy_mode == 'x+y' or structure_xy_mode == 'x*y':
CGH_x = step(np.cos(G_x * y_relative - OAM_phase), Duty_Cycle_x)
CGH_y = step(np.cos(G_y * x_relative - OAM_phase), Duty_Cycle_y)
if structure_xy_mode == 'x*y':
CGH = CGH_x * CGH_y
else:
CGH = np.mod(CGH_x + CGH_y, 2)
del CGH_x, CGH_y
gc.collect()
del x_relative, y_relative
gc.collect()
RGBs = np.uint8(CGH * 255)
del CGH
gc.collect()
# RGBs = RGBs.T
# %%
for k in range(3):
array_yx[:, :, k] = RGBs
array_yx = array_yx.transpose(1, 0, 2) if is_transverse == 1 else array_yx
del RGBs
gc.collect()
# %%
array_yx = 255 - array_yx
if is_reverse == 1: # 如果 黑白 反转
array_yx = 255 - array_yx
if is_transparent == 1: # 如果 想把 白色 弄成 透明的
array_yx[:, :, 3] = reverse(array_yx[:, :, 0])
else:
if is_transverse == 0: # 全都 不透明
array_yx[:, :, 3] = np.ones((hight_x, width_y), dtype='uint8') * 255
else:
array_yx[:, :, 3] = np.ones((width_y, hight_x), dtype='uint8') * 255
# for i in range(width_y):
# for j in range(hight_x):
# array_yx[j, i, 3] = reverse(array_yx[j, i, 0]) # 若 白 (RGB = 255) ,则 透明 (A = 0);
# # 否则 若 黑 (RGB = 0) ,则 不透明 (A = 255)
# print(array_yx[:, :, 3])
print("{} a.1. --> consume time: {} s".format(inspect.stack()[1][3], time.time() - tick_start))
# %%
# 绘图
tick_start = time.time()
is_plot = kwargs.get("is_plot", 0)
# if is_plot >= 0:
dpi = 100
size_fig_y = array_yx.shape[1] / dpi
size_fig_x = array_yx.shape[0] / dpi
plt.figure(figsize=(size_fig_y, size_fig_x), dpi=dpi)
# 图中图的大底板图,长=10英寸,宽=10英寸,每英寸300像素,共3000*3000像素
plt.axis('off') # 去掉 外侧 框线
# plt.xticks([]) # 去掉 横坐标值
# plt.yticks([]) # 去掉 纵坐标值
# plt.gca().xaxis.set_major_locator(plt.NullLocator())
# plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.imshow(array_yx)
# plt.imshow(array_yx, 'gray')
# plt.imshow(array_yxl_cos_step[l], 'gray'), \
# plt.title("pattern_yx, l = %s" % (l), fontsize = 10)
# image_yx = Image.fromarray(array_yx)
# is_transparent = image_yx.convert('RGBA')
# location = r'D:\Users\ZML\Desktop'
location = os.path.dirname(os.path.abspath(__file__))
plt.savefig(location + "\\Grating.svg", transparent=True, pad_inches=0)
plt.savefig(location + "\\Grating.png", transparent=True, pad_inches=0) # dpi=100 和上文相对应 pixel尺寸/dpi=inch尺寸
# cv2.imencode('.png', array_xy)[1].tofile(location)
plt.show() # 此处顺序不能弄反 imshow(),savefig(),show()
# plt.clf() #plt.clf()的作用:用于批量存储图片时 每一次显示图片并保存以后,释放图窗,接受下一个图片显示和存储
image_border(location + "\\Grating.png", location + "\\Grating.png", loc='a', width=10, color=(255, 255, 255, 0))
# test = cv2.imread(location + "\\test.png", -1) # 按绝对路径 以及 'RGBA' 格式 全保真 地 读取图片
print("{} a.2. --> consume time: {} s".format(inspect.stack()[1][3], time.time() - tick_start))
if __name__ == '__main__':
kwargs = \
{"l": 0, "structure_xy_mode": 'x',
"m_x": -1, "T_x": 6, "Duty_Cycle_x": 0.5,
"m_y": -1, "T_y": 6, "Duty_Cycle_y": 0.5,
# %%
"size_pattern": 500, "size_PerPixel": 1,
"size_pattern_y": 1800, # size_pattern / size_PerPixel = 65536 = 2 ^ 16 是上限
# %%
"is_transverse": 1, "is_positive": 1, "is_transparent": 1,
"is_reverse": 1,
# %%
"is_plot": 1,
}
CGH_grating(**kwargs)