forked from thiswinex/STBP-simple
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_dvs.py
110 lines (89 loc) · 4.44 KB
/
example_dvs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from __future__ import print_function
import numpy as np
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from model import *
from dataset import NMNIST
from tensorboardX import SummaryWriter
def train(args, model, device, train_loader, optimizer, epoch, writer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.mse_loss(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data / steps), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader, epoch, writer):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.mse_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
#print(pred.shape)
#print(target.shape)
target_label = target.argmax(dim=1, keepdim=True)
correct += pred.eq(target_label.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=30, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=True,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda:2" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
writer = SummaryWriter('./summaries/cifar10')
train_dataset = NMNIST(train=True, step=steps, dt=dt, path='./data/NMNIST_npy/Train/')
test_dataset = NMNIST(train=False, step=steps, dt=dt, path='./data/NMNIST_npy/Test/')
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = NMNISTNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
model=nn.DataParallel(model, device_ids=[2,3])
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch, writer)
test(args, model, device, test_loader, epoch, writer)
writer.close()
if (args.save_model):
torch.save(model.state_dict(), "./tmp/NMNIST/NMNIST.pt")
torch.save(model, "./tmp/NMNIST/NMNIST.pth")
if __name__ == '__main__':
main()