forked from mahaitongdae/Reachability_Constrained_RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathploter.py
364 lines (329 loc) · 17 KB
/
ploter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# =====================================
# @Time : 2020/9/25
# @Author : Yang Guan (Tsinghua Univ.)
# @FileName: ploter.py
# =====================================
import copy
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tensorflow as tf
from tensorflow.core.util import event_pb2
sns.set(style="darkgrid")
SMOOTHFACTOR = 0.8
def help_func(env):
if env == 'path_tracking_env':
tag2plot = ['episode_return', 'episode_len', 'delta_y_mse', 'delta_phi_mse', 'delta_v_mse',
'stationary_rew_mean', 'steer_mse', 'acc_mse']
alg_list = ['MPG-v3', 'MPG-v2', 'NDPG', 'NADP', 'TD3', 'SAC']
lbs = ['MPG-v1', 'MPG-v2', r'$n$-step DPG', r'$n$-step ADP', 'TD3', 'SAC']
palette = "bright"
goal_perf_list = [-200, -100, -50, -30, -20, -10, -5]
dir_str = './results/{}/data2plot'
else:
tag2plot = ['episode_return', 'episode_len', 'x_mse', 'theta_mse', 'xdot_mse', 'thetadot_mse']
alg_list = ['MPG-v2', 'NADP', 'TD3', 'SAC']
lbs = ['MPG-v2', r'$n$-step ADP', 'TD3', 'SAC']
palette = [(1.0, 0.48627450980392156, 0.0),
(0.9098039215686274, 0.0, 0.043137254901960784),
(0.5450980392156862, 0.16862745098039217, 0.8862745098039215),
(0.6235294117647059, 0.2823529411764706, 0.0),]
goal_perf_list = [-20, -10, -2, -1, -0.5, -0.1, -0.01]
dir_str = './results/{}/data2plot_mujoco'
return tag2plot, alg_list, lbs, palette, goal_perf_list, dir_str
def plot_eval_results_of_all_alg_n_runs(env, dirs_dict_for_plot=None):
tag2plot, alg_list, lbs, palette, _, dir_str = help_func(env)
df_list = []
df_in_one_run_of_one_alg = {}
for alg in alg_list:
data2plot_dir = dir_str.format(alg)
data2plot_dirs_list = dirs_dict_for_plot[alg] if dirs_dict_for_plot is not None else os.listdir(data2plot_dir)
for num_run, dir in enumerate(data2plot_dirs_list):
eval_dir = data2plot_dir + '/' + dir + '/logs/evaluator'
eval_file = os.path.join(eval_dir,
[file_name for file_name in os.listdir(eval_dir) if file_name.startswith('events')][0])
eval_summarys = tf.data.TFRecordDataset([eval_file])
data_in_one_run_of_one_alg = {key: [] for key in tag2plot}
data_in_one_run_of_one_alg.update({'iteration': []})
for eval_summary in eval_summarys:
event = event_pb2.Event.FromString(eval_summary.numpy())
for v in event.summary.value:
t = tf.make_ndarray(v.tensor)
for tag in tag2plot:
if tag == v.tag[11:]:
data_in_one_run_of_one_alg[tag].append((1-SMOOTHFACTOR)*data_in_one_run_of_one_alg[tag][-1] + SMOOTHFACTOR*float(t)
if data_in_one_run_of_one_alg[tag] else float(t))
data_in_one_run_of_one_alg['iteration'].append(int(event.step))
len1, len2 = len(data_in_one_run_of_one_alg['iteration']), len(data_in_one_run_of_one_alg[tag2plot[0]])
period = int(len1/len2)
data_in_one_run_of_one_alg['iteration'] = [data_in_one_run_of_one_alg['iteration'][i*period]/10000. for i in range(len2)]
data_in_one_run_of_one_alg.update(dict(algorithm=alg, num_run=num_run))
df_in_one_run_of_one_alg = pd.DataFrame(data_in_one_run_of_one_alg)
df_list.append(df_in_one_run_of_one_alg)
total_dataframe = df_list[0].append(df_list[1:], ignore_index=True) if len(df_list) > 1 else df_list[0]
figsize = (20, 8)
axes_size = [0.11, 0.11, 0.89, 0.89] if env == 'path_tracking_env' else [0.095, 0.11, 0.905, 0.89]
fontsize = 25
f1 = plt.figure(1, figsize=figsize)
ax1 = f1.add_axes(axes_size)
sns.lineplot(x="iteration", y="episode_return", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
)
base = -30 if env == 'path_tracking_env' else -2
basescore = sns.lineplot(x=[0., 10.], y=[base, base], linewidth=2, color='black', linestyle='--')
print(ax1.lines[0].get_data())
ax1.set_ylabel('Episode Return', fontsize=fontsize)
ax1.set_xlabel("Iteration [x10000]", fontsize=fontsize)
handles, labels = ax1.get_legend_handles_labels()
labels = lbs
ax1.legend(handles=handles+[basescore.lines[-1]], labels=labels+['Base score'], loc='lower right', frameon=False, fontsize=fontsize)
lim = (-800, 50) if env == 'path_tracking_env' else (-60, 5)
plt.xlim(0., 10.2)
plt.ylim(*lim)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
if env == 'path_tracking_env':
f2 = plt.figure(2, figsize=figsize)
ax2 = f2.add_axes(axes_size)
sns.lineplot(x="iteration", y="delta_y_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
)
ax2.set_ylabel('Position Error [m]', fontsize=fontsize)
ax2.set_xlabel("Iteration [x10000]", fontsize=fontsize)
handles, labels = ax2.get_legend_handles_labels()
labels = lbs
ax2.legend(handles=handles, labels=labels, loc='upper right', frameon=False, fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
f3 = plt.figure(3, figsize=figsize)
ax3 = f3.add_axes(axes_size)
sns.lineplot(x="iteration", y="delta_phi_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
legend=False)
ax3.set_ylabel('Heading Angle Error [rad]', fontsize=fontsize)
ax3.set_xlabel("Iteration [x10000]", fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
f4 = plt.figure(4, figsize=figsize)
ax4 = f4.add_axes(axes_size)
sns.lineplot(x="iteration", y="delta_v_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
legend=False)
ax4.set_ylabel('Velocity Error [m/s]', fontsize=fontsize)
ax4.set_xlabel("Iteration [x10000]", fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
f5 = plt.figure(5, figsize=figsize)
ax5 = f5.add_axes(axes_size)
sns.lineplot(x="iteration", y="steer_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
)
ax5.set_ylabel('Front Wheel Angle [rad]', fontsize=fontsize)
ax5.set_xlabel("Iteration [x10000]", fontsize=fontsize)
handles, labels = ax5.get_legend_handles_labels()
labels = lbs
ax5.legend(handles=handles, labels=labels, loc='upper right', frameon=False, fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
f6 = plt.figure(6, figsize=figsize)
ax6 = f6.add_axes(axes_size)
sns.lineplot(x="iteration", y="acc_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
legend=False)
ax6.set_ylabel('Acceleration [$m^2$/s]', fontsize=fontsize)
ax6.set_xlabel("Iteration [x10000]", fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
else:
f2 = plt.figure(2, figsize=figsize)
ax2 = f2.add_axes(axes_size)
sns.lineplot(x="iteration", y="x_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
)
ax2.set_ylabel('Cart Position [m]', fontsize=fontsize)
ax2.set_xlabel("Iteration [x10000]", fontsize=fontsize)
handles, labels = ax2.get_legend_handles_labels()
labels = lbs
ax2.legend(handles=handles, labels=labels, loc='upper right', frameon=False, fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
f3 = plt.figure(3, figsize=figsize)
ax3 = f3.add_axes(axes_size)
sns.lineplot(x="iteration", y="theta_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
legend=False)
ax3.set_ylabel('Pole Angle [rad]', fontsize=fontsize)
ax3.set_xlabel("Iteration [x10000]", fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
f4 = plt.figure(4, figsize=figsize)
ax4 = f4.add_axes(axes_size)
sns.lineplot(x="iteration", y="xdot_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
legend=False)
ax4.set_ylabel('Cart Velocity [m/s]', fontsize=fontsize)
ax4.set_xlabel("Iteration [x10000]", fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
f5 = plt.figure(5, figsize=figsize)
ax5 = f5.add_axes(axes_size)
sns.lineplot(x="iteration", y="thetadot_mse", hue="algorithm",
data=total_dataframe, linewidth=2, palette=palette,
legend=False)
ax5.set_ylabel('Pole Angular Velocity [rad/s]', fontsize=fontsize)
ax5.set_xlabel("Iteration [x10000]", fontsize=fontsize)
plt.xlim(0., 10.2)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
plt.show()
allresults = {}
results2print = {}
for alg, group in total_dataframe.groupby('algorithm'):
allresults.update({alg: []})
for ite, group1 in group.groupby('iteration'):
mean = group1['episode_return'].mean()
std = group1['episode_return'].std()
allresults[alg].append((mean, std))
for alg, result in allresults.items():
mean, std = sorted(result, key=lambda x: x[0])[-1]
results2print.update({alg: [mean, 2 * std]})
print(results2print)
def compute_convergence_speed(goal_perf, dirs_dict_for_plot=None):
_, alg_list, _, _, _, dir_str = help_func(env)
result_dict = {}
for alg in alg_list:
result_dict.update({alg: []})
data2plot_dir = dir_str.format(alg)
data2plot_dirs_list = dirs_dict_for_plot[alg] if dirs_dict_for_plot is not None else os.listdir(data2plot_dir)
for num_run, dir in enumerate(data2plot_dirs_list):
stop_flag = 0
eval_dir = data2plot_dir + '/' + dir + '/logs/evaluator'
eval_file = os.path.join(eval_dir,
[file_name for file_name in os.listdir(eval_dir) if
file_name.startswith('events')][0])
eval_summarys = tf.data.TFRecordDataset([eval_file])
for eval_summary in eval_summarys:
if stop_flag != 1:
event = event_pb2.Event.FromString(eval_summary.numpy())
for v in event.summary.value:
if stop_flag != 1:
t = tf.make_ndarray(v.tensor)
step = float(event.step)
if 'episode_return' in v.tag:
if t > goal_perf:
result_dict[alg].append(step)
stop_flag = 1
if stop_flag == 0:
result_dict[alg].append(np.inf)
return result_dict
def min_n(inp_list, n):
return sorted(inp_list)[:n]
def plot_convergence_speed_for_different_goal_perf(env):
_, _, lbs, palette, goal_perf_list, dir_str = help_func(env)
result2print = {}
df_list = []
for goal_perf in goal_perf_list:
result2print.update({goal_perf: dict()})
result_dict_for_this_goal_perf = compute_convergence_speed(goal_perf)
for alg in result_dict_for_this_goal_perf:
first_arrive_steps_list = result_dict_for_this_goal_perf[alg]
df_for_this_alg_this_goal = pd.DataFrame(dict(algorithm=alg,
goal_perf=str(goal_perf),
first_arrive_steps=list(map(lambda x: x/10000., min_n(first_arrive_steps_list, 3)))))
result2print[goal_perf].update({alg: [np.mean(min_n(first_arrive_steps_list, 3)), 2*np.std(min_n(first_arrive_steps_list, 3))]})
df_list.append(df_for_this_alg_this_goal)
total_dataframe = df_list[0].append(df_list[1:], ignore_index=True) if len(df_list) > 1 else df_list[0]
figsize = (20, 8)
axes_size = [0.06, 0.12, 0.94, 0.88]
fontsize = 25
f1 = plt.figure(1, figsize=figsize)
ax1 = f1.add_axes(axes_size)
sns.lineplot(x="goal_perf", y="first_arrive_steps", hue="algorithm", data=total_dataframe, linewidth=2,
palette=palette, legend=False)
ax1.set_ylabel('Iterations required [x10000]', fontsize=fontsize)
ax1.set_xlabel("Goal performance", fontsize=fontsize)
handles, labels = ax1.get_legend_handles_labels()
labels = lbs
ax1.legend(handles=handles, labels=labels, loc='upper left', frameon=False, fontsize=11)
ax1.set_xticklabels([str(goal) for goal in goal_perf_list])
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize)
print(result2print)
plt.show()
def plot_opt_results_of_all_alg_n_runs(env, dirs_dict_for_plot=None):
_, alg_list, lbs, palette, _, _ = help_func(env)
dir_str = './results/{}/time'
tag2plot = ['pg_time'] # 'update_time' 'pg_time']
df_list = []
for alg in alg_list:
data2plot_dir = dir_str.format(alg)
data2plot_dirs_list = dirs_dict_for_plot[alg] if dirs_dict_for_plot is not None else os.listdir(data2plot_dir)
for num_run, dir in enumerate(data2plot_dirs_list):
opt_dir = data2plot_dir + '/' + dir + '/logs/optimizer'
opt_file = os.path.join(opt_dir,
[file_name for file_name in os.listdir(opt_dir) if
file_name.startswith('events')][0])
opt_summarys = tf.data.TFRecordDataset([opt_file])
data_in_one_run_of_one_alg = {key: [] for key in tag2plot}
data_in_one_run_of_one_alg.update({'iteration': []})
for opt_summary in opt_summarys:
event = event_pb2.Event.FromString(opt_summary.numpy())
for v in event.summary.value:
t = tf.make_ndarray(v.tensor)
for tag in tag2plot:
if tag in v.tag:
data_in_one_run_of_one_alg[tag].append(1000*float(t))# if float(t)<0.004 else 1.5)
data_in_one_run_of_one_alg['iteration'].append(int(event.step))
len1, len2 = len(data_in_one_run_of_one_alg['iteration']), len(data_in_one_run_of_one_alg[tag2plot[0]])
period = int(len1 / len2)
data_in_one_run_of_one_alg['iteration'] = [data_in_one_run_of_one_alg['iteration'][i * period] / 10000. for
i in range(len2)]
data_in_one_run_of_one_alg = {key: val[200:] for key, val in data_in_one_run_of_one_alg.items()}
data_in_one_run_of_one_alg.update(dict(algorithm=alg, num_run=num_run))
df_in_one_run_of_one_alg = pd.DataFrame(data_in_one_run_of_one_alg)
df_list.append(df_in_one_run_of_one_alg)
total_dataframe = df_list[0].append(df_list[1:], ignore_index=True) if len(df_list) > 1 else df_list[0]
figsize = (20, 8)
axes_size = [0.11, 0.12, 0.89, 0.88]
fontsize = 25
f1 = plt.figure(1, figsize=figsize)
ax1 = f1.add_axes(axes_size)
sns.boxplot(x="algorithm", y=tag2plot[0], data=total_dataframe, palette=palette)
sns.despine(offset=10, trim=True)
TAG2LBS = {'pg_time': 'Wall-clock Time per Gradient [ms]',
'update_time': 'Wall-clock Time per Update [ms]'}
ax1.set_ylabel(TAG2LBS[tag2plot[0]], fontsize=fontsize)
labels = lbs
ax1.set_xticklabels(labels, fontsize=fontsize)
ax1.set_xlabel("", fontsize=fontsize)
plt.yticks(fontsize=fontsize)
plt.xticks(fontsize=fontsize, rotation=10)
plt.show()
def calculate_fair_case_path_tracking():
delta_u, delta_y, delta_phi, r, delta, acc = 2, 1, 10*np.pi/180, 0.2, 0.1, 0.5
r = -0.01*delta_u**2-0.04*delta_y**2-0.1*delta_phi**2-0.02*r**2-5*delta**2-0.05*acc**2
print(200*r)
def calculate_fair_case_inverted():
x, theta, x_dot, theta_dot = 1., 0.1, 0.1, 0.05
r = -0.01*x**2-theta**2-0.1*x_dot**2-0.1*theta_dot**2
print(100*r)
if __name__ == "__main__":
env = 'inverted_pendulum_env' # inverted_pendulum_env path_tracking_env
plot_eval_results_of_all_alg_n_runs(env)
# plot_opt_results_of_all_alg_n_runs(env)
# print(compute_convergence_speed(-100.))
# plot_convergence_speed_for_different_goal_perf(env)
# calculate_fair_case_path_tracking()
# calculate_fair_case_inverted()