-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbino3_metatest.py
217 lines (175 loc) · 13.2 KB
/
bino3_metatest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
import torch
import torch.nn as nn
import torch.optim
import time
import os, argparse, tqdm
from colorama import init, Fore
init() # Init Colorama
color_code = Fore.BLUE
try: from apex import amp
except Exception:
amp = None
print('WARNING: could not import pygcransac')
pass
from data.datamgr import SetDataManager
from sklearn.linear_model import LogisticRegression
from utils import *
from methods.bino2_singular_HeM import Bino_Singular_HeM
def weighted_average(results1, results2, weight1=0.5, weight2=0.5):
combined_results = (results1 * weight1 + results2 * weight2) / (weight1 + weight2)
combined_results = torch.argmax(combined_results, dim=1)
return combined_results
def average_rank(results1, results2):
rank_results1 = torch.softmax(results1, dim=1)
rank_results2 = torch.softmax(results2, dim=1)
combined_rank = (rank_results1 + rank_results2) / 2
combined_results = torch.argmax(combined_rank, dim=1)
return combined_results
if __name__ == '__main__':
option_dataset=['cub_cropped','aircraft_fs','flowers_fs','stanford_car']
option_models=['Le_Vision_EConv4', 'Re_Vision_EConv4', 'Le_Vision_EResnet12', 'Re_Vision_EResnet12',
'Le_Vision_EConv4_narrow','Re_Vision_EConv4_narrow','Le_Vision_EConv4_middle','Re_Vision_EConv4_middle',
'Le_Vision_EResnet12_narrow','Re_Vision_EResnet12_narrow','Le_Vision_EResnet12_middle','Re_Vision_EResnet12_middle',
'Le_Vision_EResnet12_split_vision','Re_Vision_EResnet12_split_vision','Le_Vision_EResnet12_split_egcm',
'Re_Vision_EResnet12_split_egcm','Le_Vision_EResnet12_split_vision_egcm','Re_Vision_EResnet12_split_vision_egcm']
option_methods=['BinoHeD']
vision_methods=['pure', 'disparity']
FLLS_choice=['shared', 'independent']
AELS_choice=['shared', 'independent']
DRS_choice=['GCM', 'GRM', 'SVD']
################################
# 0 超参数
################################
parser = argparse.ArgumentParser()
parser.add_argument('--image_size', default=84, type=int, choices=[84, 224])
parser.add_argument('--dataset', default='miniimagenet_middle', choices=option_dataset)
parser.add_argument('--data_path', type=str)
parser.add_argument('--pre_batch_size', default=64, type=int, help='pre-training batch size')
parser.add_argument('--pre_num_episode', default=1000, type=int, help='number of episodes in meta validation')
parser.add_argument('--pre_optimizer', default='SGD', choices=['SGD', 'Adam'], help='Collaborative Identification Mechanism(CIM)')
parser.add_argument('--pre_lr', type=float, default=0.05, help='initial learning rate of the backbone')
parser.add_argument('--pre_epoch', default=200, type=int, help='stopping epoch')
parser.add_argument('--meta_lr', type=float, default=0.0005, help='initial learning rate of the metatrain')
parser.add_argument('--meta_epoch', default=100, type=int, help='Stopping epoch')
parser.add_argument('--meta_train_n_episode', default=600, type=int, help='number of episodes in meta train')
parser.add_argument('--meta_val_n_episode', default=300, type=int, help='number of episodes in meta val')
parser.add_argument('--optimizer', default='SGD', choices=['SGD', 'Adam'], help='Collaborative Identification Mechanism(CIM)')
parser.add_argument('--model_l', default='ResNet12', choices=option_models)
parser.add_argument('--model_r', default='ResNet12', choices=option_models)
parser.add_argument('--method', default='stl_deepbdc', choices=option_methods)
parser.add_argument('--vision_method', default='pure', choices=vision_methods)
parser.add_argument('--test_n_way', default=5, type=int, help='number of classes used for testing (validation)')
parser.add_argument('--n_shot', default=5, type=int, help='number of labeled data in each class, same as n_support')
parser.add_argument('--n_query', default=15, type=int, help='number of unlabeled data in each class during meta validation')
parser.add_argument('--test_n_episode', default=1000, type=int, help='number of episodes in test')
parser.add_argument('--model_path', default='', help='meta-trained or pre-trained model .tar file path')
parser.add_argument('--test_task_nums', default=5, type=int, help='test numbers')
parser.add_argument('--gpu', default='0', type=str, help='gpu id')
parser.add_argument('--penalty_C', default=0.1, type=float, help='logistic regression penalty parameter')
parser.add_argument('--dropout_rate', default=0.5, type=float, help='dropout rate for pretrain and distillation')
parser.add_argument('--reduce_dim', default=640, type=int, help='the output dimensions of BDC dimensionality reduction layer')
parser.add_argument('--FLLS', default='shared', choices=FLLS_choice, help='learning style of BSFE')
parser.add_argument('--AELS', default='independent', choices=AELS_choice, help='learning style of Singular HeM')
parser.add_argument('--DRS', default='GCM', choices=DRS_choice, help='Dimention Reduction Style(DRS)')
parser.add_argument('--CIM', default='ARS', choices=['WAS', 'ARS'], help='Collaborative Identification Mechanism(CIM)')
################################
# DistributedDataParallel
################################
parser.add_argument('--amp_opt_level', type=str, default='O0', choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used')
params = parser.parse_args()
num_gpu = set_gpu(params)
novel_file = 'test'
################################
# 1 加载数据集
################################
novel_few_shot_params = dict(n_way=params.test_n_way, n_support=params.n_shot)
novel_datamgr = SetDataManager(params.data_path, params.image_size, n_query=params.n_query, n_episode=params.test_n_episode, dataset=params.dataset, **novel_few_shot_params)
novel_loader = novel_datamgr.get_data_loader(novel_file, aug=False)
################################
# 2 初始化网络模型
################################
model = Bino_Singular_HeM(params, model_dict[params.model_l], model_dict[params.model_r], **novel_few_shot_params)
# model save path
model = model.cuda()
model.eval()
print(params.model_path)
model_file = os.path.join(params.model_path)
model = load_model(model, model_file)
print(params)
if params.FLLS=='shared': FLLS='share'
else: FLLS='split'
if params.AELS=='shared': AELS='share'
else: AELS='split'
if params.model_l == 'Le_Vision_EConv4' and params.model_r == 'Re_Vision_EConv4':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EConv4_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM)
elif params.model_l == 'Le_Vision_EResnet12' and params.model_r == 'Re_Vision_EResnet12':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EResnet12_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
elif params.model_l == 'Le_Vision_EConv4_narrow' and params.model_r == 'Re_Vision_EConv4_narrow':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EConv4_narrow_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
elif params.model_l == 'Le_Vision_EConv4_middle' and params.model_r == 'Re_Vision_EConv4_middle':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EConv4_middle_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
elif params.model_l == 'Le_Vision_EResnet12_narrow' and params.model_r == 'Re_Vision_EResnet12_narrow':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EResnet12_narrow_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
elif params.model_l == 'Le_Vision_EResnet12_middle' and params.model_r == 'Re_Vision_EResnet12_middle':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EResnet12_middle_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
elif params.model_l == 'Le_Vision_EResnet12_split_vision' and params.model_r == 'Re_Vision_EResnet12_split_vision':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EResnet12_split_vision_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
elif params.model_l == 'Le_Vision_EResnet12_split_egcm' and params.model_r == 'Re_Vision_EResnet12_split_egcm':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EResnet12_split_egcm_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
elif params.model_l == 'Le_Vision_EResnet12_split_vision_egcm' and params.model_r == 'Re_Vision_EResnet12_split_vision_egcm':
params.checkpoint_dir = './checkpoints/%s/Bino_Vision_EResnet12_split_vision_egcm_%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
else:
params.checkpoint_dir = './checkpoints/%s/%s_%s/%s_%s/FLLS_%s_AELS_%s_DRS_%s_CIM_%s' % (params.dataset, params.model_l, params.model_r, params.method, params.vision_method, FLLS, AELS, params.DRS, params.CIM) # 依据dataset,model和method,来初始化BaselineTrain。
params.checkpoint_dir += '/metaphase_%s_%s_%s_%s_%s_%dway_%dshot' % (params.pre_optimizer, params.pre_batch_size, float(params.pre_lr), params.pre_num_episode, params.pre_epoch, params.test_n_way, params.n_shot)
params.checkpoint_dir += '/metatest_%s_%s_%s_train_%s_val_%s_test_%s' %(params.optimizer, float(params.meta_lr), params.meta_epoch, params.meta_train_n_episode, params.meta_val_n_episode, params.test_n_episode)
if not os.path.isdir(params.checkpoint_dir): os.makedirs(params.checkpoint_dir)
################################
# 3 网络模型推理
################################
path_file = os.path.join(params.checkpoint_dir, 'test_log.txt')
log_file = open(path_file, 'w')
log_file.write(f'params: {params}\n')
log_file.close()
iter_num = params.test_n_episode
acc_all_task, std_all_task, latency_task = [], [], []
for _ in range(params.test_task_nums):
log_file = open(path_file, 'a')
acc_all, latency_all = [],[]
test_start_time = time.time()
tqdm_gen = tqdm.tqdm(novel_loader, bar_format="{l_bar}%s{bar}%s{r_bar}" % (color_code, Fore.RESET))
for _, (x, _) in enumerate(tqdm_gen):
with torch.no_grad():
model.n_query = params.n_query
s_time = time.time()
scores_l, scores_r = model.set_test_forward(x, False)
f_time = time.time()
period = f_time - s_time
scores_l = torch.softmax(scores_l, dim=1)
scores_r = torch.softmax(scores_r, dim=1)
scores = (scores_l + scores_r) / 2
if params.method in ['BinoHeD']:
pred = scores.data.cpu().numpy().argmax(axis=1)
else:
pred = scores
y = np.repeat(range(params.test_n_way), params.n_query)
acc = np.mean(pred == y) * 100
acc_all.append(acc)
latency_all.append(period*1000)
tqdm_gen.set_description(f'avg.acc:{(np.mean(acc_all)):.2f} (curr:{acc:.2f})')
acc_all = np.asarray(acc_all)
acc_mean = np.mean(acc_all)
acc_std = np.std(acc_all)
print(Fore.RED +'%d Test Acc = %4.2f%% +- %4.2f%% (Time uses %.2f minutes)'
% (iter_num, acc_mean, 1.96 * acc_std / np.sqrt(iter_num), (time.time() - test_start_time) / 60))
log_file.write(f'iter_num: {iter_num}, test acc: {acc_mean}+-{1.96 * acc_std / np.sqrt(iter_num)}, \
time-consuming: {(time.time()-test_start_time)/60}\n')
acc_all_task.append(acc_all)
std_all_task.append(1.96 * acc_std / np.sqrt(iter_num))
latency_task.append(latency_all)
log_file.close()
log_file = open(path_file, 'a')
acc_all_task_mean, acc_all_task_std, latency_task_mean = np.mean(acc_all_task), np.mean(std_all_task), np.mean(latency_task)
print(Fore.RED +'%d test mean acc = %4.2f%% std = %4.2f%% latency=%4d' % (params.test_task_nums, acc_all_task_mean, acc_all_task_std, latency_task_mean))
log_file.write(f'All tasks:{params.test_task_nums} , test mean acc:{acc_all_task_mean}, std:{acc_all_task_std}, latency:{latency_task_mean}')
log_file.close()