-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsinkhorn_solver_1D.m
357 lines (270 loc) · 9.75 KB
/
sinkhorn_solver_1D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
%% SOLVER FOR 1D Problem
% INPUTS/PARAMETERS
clear
cd('/Users/cesarbarilla/Documents/Work/Projects/MFG-Cities/MFG-Cities_Code')
% Space grid
nspace = 100 ;
xmin = 0 ;
xmax = 10 ;
x = linspace(xmin,xmax,nspace) ;
% Time horizon
T = 40 ;
% Number of time steps
N = 80 ;
% OT Regularization parameter
sigma = .1 ;
% Diffusion parameter for first population (inhabitants)
nu1 = .01 ;
% Diffusion parameter for second population (firms)
nu2 = .01 ;
% Moving cost parameters
theta1 = 150 ;
theta2 = 200 ;
% Ground cost : linear, sqrt, or quadratic
groundcosttxt = 'sqrt' ;
if strcmp(groundcosttxt,'sqrt') == 1
gcpower = 1/2 ;
elseif strcmp(groundcosttxt,'linear') == 1
gcpower = 1 ;
elseif strcmp(groundcosttxt,'quadratic') == 1
gcpower = 2 ;
end
% Congestion function parameters
p = 50 ; % power
a = 100 ; % multiplicative constant
% Initial conditions (comment/uncomment/modify as desired)
%m2_0 = gaussian1D(x,2,.2) + gaussian1D(x,6,.1) + gaussian1D(x,9,.3) ;
%m1_0 = gaussian1D(x,4,.1) ;
m2_0 = gaussian1D(x,2,.2) + gaussian1D(x,5,.5) + gaussian1D(x,6,.1) + gaussian1D(x,9,.3) ;
m1_0 = ones(1,nspace) ;
%m1_0 = gaussian1D(x,1,.1) + gaussian1D(x,3,.1) + gaussian1D(x,5,.1) + gaussian1D(x,7,.1) ;
%m2_0 = gaussian1D(x,2,.1) + gaussian1D(x,4,.1) + gaussian1D(x,6,.1) + gaussian1D(x,8,.1) ;
%m1_0 = tent(x,0,2) + tent(x,10,2) ;
%m2_0 = tent(x,5,1) ;
% Normalize initial conditions
massmin = 0.01 ;
m1_0 = normalize(m1_0+max(m1_0)*massmin) ;
m2_0 = normalize(m2_0+max(m2_0)*massmin) ;
% Time step
dt = T/N ;
% OT Kernel
xi = exp(-c(x,gcpower)/sigma) ;
% Heat Kernels
P1 = P(nu1*dt,x) ;
P2 = P(nu2*dt,x) ;
% INITIALIZATION
Q1 = repmat(m1_0,[N+1,1]) ;
Q2 = repmat(m2_0,[N+1,1]) ;
A1 = ones(N+1,nspace) ;
A2 = ones(N+1,nspace) ;
V1 = ones(N+1,nspace) ;
V2 = ones(N+1,nspace) ;
% Plotting parameters
nbsteps = 7 ;
plotsteps = 7 ;
% Store parameters in text to append to graph outputs
parameterstext = ['T = ', num2str(T), ' ; N = ', num2str(N),...
' ; \theta_1 = ', num2str(theta1),...
' ; \theta_2 = ', num2str(theta2),...
' ; \sigma = ', num2str(sigma),...
' ; \nu_1 = ', num2str(nu1),...
' ; \nu_2 = ', num2str(nu2),...
' ; p = ', num2str(p),...
' ; a = ', num2str(a),...
' ; ground cost : ', groundcosttxt] ;
modelsumup = { parameterstext } ;
%% SINKHORN ITERATIONS
nbitermax = 2000 ; % Set number of iteration
freq_display = 50 ;
freq_plot = 500 ; % Frequence of plots during iterations
thrs = 10^(-7) ; % Error threshold
beta_sol = ones(1,nspace) ; % Initial guess for solution of minimization problem
err_Q1 = [] ;
err_Q2 = [] ;
err_Q1_temp = 1 ;
err_Q2_temp = 1 ;
count = 0 ; % Iteration count
tic
while (err_Q1_temp > thrs) || (err_Q2_temp > thrs)
count = count + 1 ;
if mod(count,freq_display) == 0
disp(['Iteration count : ', num2str(count)])
disp(['Error (L2 norm on densities) = ', ...
num2str(err_Q1_temp),' (Q1), ', ...
num2str(err_Q2_temp),' (Q2)'])
end
% Store previous iterations
Q1_prev = Q1 ;
Q2_prev = Q2 ;
% Update of a_k,b_k,c_k,d_k for k=1,...,N
for k = 1:N+1
A1(k,:) = ( ...
( ...
exp(V1(k,:)) ...
.* ...
kertemp(k , A1.^(-dt*sigma / theta1) .* exp(V1) , P1) ...
) ...
./...
( ...
A2(k,:) ...
* ...
xi'...
) ...
)...
.^ ( theta1 / (theta1 + dt * sigma) ) ...
;
A2(k,:) = ( ...
( ...
exp(V2(k,:)) ...
.* ...
kertemp(k , A2.^(-dt*sigma / theta2) .* exp(V2) , P2) ...
) ...
./...
( ...
A1(k,:) ...
* ...
xi ...
) ...
)...
.^ ( theta2 / (theta2 + dt * sigma) ) ...
;
end
V1(1,:) = ...
log( ...
m1_0 ...
./ ...
(...
A1(1,:).^( - (dt*sigma) / theta1 ) ...
.* kertemp(1,A1.^(-dt*sigma / theta1) .* exp(V1) , P1) ...
) ...
) ;
V2(1,:) = ...
log( ...
m2_0 ...
./ ...
(...
A2(1,:).^( - (dt*sigma) / theta2 ) ...
.* kertemp(1,A2.^(-dt*sigma / theta2) .* exp(V2) , P2) ...
) ...
) ;
for k = 2:N+1
kertemp1 = kertemp(k, A1.^(-dt*sigma / theta1) .* exp(V1) , P1) ;
kertemp2 = kertemp(k, A2.^(-dt*sigma / theta2) .* exp(V2) , P2) ;
funcwithgrad = @(beta) optimiterfunc(beta,p,a,theta1,theta2,kertemp1,kertemp2,dt) ;
options = optimoptions(@fminunc,...
'Display','off',...
'SpecifyObjectiveGradient',true);
init = beta_sol ;
[beta_sol,~] = fminunc(funcwithgrad,init,options) ;
V1(k,:) = - (dt/theta1) * beta_sol ;
V2(k,:) = - (dt/theta2) * beta_sol ;
end
% Update Q1 :
for k = 1:N+1
Q1(k,:) = A1(k,:).^(-(dt*sigma)/theta1) ...
.* exp(V1(k,:)) ...
.* kertemp(k,A1.^(-(dt*sigma)/theta1) .* exp(V1),P1) ;
end
% Update Q here :
for k = 1:N+1
Q2(k,:) = A2(k,:).^(-(dt*sigma)/theta2) ...
.* exp(V2(k,:)) ...
.* kertemp(k,A2.^(-(dt*sigma)/theta2) .* exp(V2),P2) ;
end
% Convergence :
err_Q1_temp = norm(Q1_prev - Q1) ;
err_Q2_temp = norm(Q2_prev - Q2) ;
% Plots
if mod(count,freq_plot) == 0
figure
subplot(nbsteps,1,1)
plot(x,Q1(1,:),x,Q2(1,:),'linewidth',1.5) ;
title('Evolution of densities')
legend('Density of inhabitants','Density of firms')
ylabel('k=0')
for iplot = 2:nbsteps-1
k_eval = floor((iplot-1)*((N+1)/plotsteps)) + 1 ;
subplot(nbsteps,1,iplot)
plot(x,Q1(k_eval,:),x,Q2(k_eval,:),'linewidth',1.5) ; axis tight ;
timetext = ['k =', num2str(k_eval-1)] ;
ylabel(timetext)
end
subplot(nbsteps,1,nbsteps)
plot(x,Q1(N,:),x,Q2(N,:),'linewidth',1.5) ; axis tight ;
timetext = ['k = N =', num2str(N)] ;
ylabel(timetext)
drawnow
end
if count > nbitermax
break
end
% Main loop end
end
if count < nbitermax
disp(['Main loop converged after ',num2str(count),...
' iterations (Error = ', num2str(err_Q1_temp),...
' (Q1) ; ', num2str(err_Q2_temp),' (Q2))']) ;
end
if count >= nbitermax
disp(['Main loop ended after reaching max of ',num2str(count),...
' iterations (Error = ', num2str(err_Q1_temp),...
' (Q1) ; ', num2str(err_Q2_temp),' (Q2))']) ;
end
toc
%% Output graph
addpath('/Users/cesarbarilla/Documents/MATLAB/suplabel')
cd('/Users/cesarbarilla/Documents/Work/Projects/MFG-Cities/Simulations')
figure
subplot(nbsteps,1,1)
hold on
plot(x,Q1(1,:),'linewidth',1.5) ;
plot(x,Q2(1,:),'--','linewidth',1.5) ;
axis tight ;
box on ;
hold off
title('Evolution of densities')
legend('Density of inhabitants','Density of firms','Location','northeast')
ylabel('k=0')
for iplot = 2:nbsteps-1
k_eval = floor((iplot-1)*((N+1)/plotsteps)) + 1 ;
subplot(nbsteps,1,iplot)
hold on
plot(x,Q1(k_eval,:),'linewidth',1.5) ;
plot(x,Q2(k_eval,:),'--','linewidth',1.5) ;
axis tight ;
box on ;
hold off
timetext = ['k =', num2str(k_eval-1)] ;
ylabel(timetext)
end
subplot(nbsteps,1,nbsteps)
hold on
plot(x,Q1(N,:),'linewidth',1.5) ;
plot(x,Q2(N,:),'--','linewidth',1.5) ;
axis tight ;
box on ;
hold off
timetext = ['k = N =', num2str(N)] ;
ylabel(timetext)
[ax,h1]=suplabel(modelsumup);
%% Output Gif
addpath('/Users/cesarbarilla/Documents/MATLAB/gif')
addpath('/Users/cesarbarilla/Documents/MATLAB/suplabel')
cd('/Users/cesarbarilla/Documents/Work/Projects/MFG-Cities/Simulations')
figure
plot(x,Q1(1,:),x,Q2(1,:),'linewidth',1) ; axis tight ;
pbaspect([2,1,1])
legend('Density of inhabitants','Density of firms')
gif('Simu1D_30 .gif','Delaytime', 3/4,'frame',gcf)
timetext = ['k =', num2str(0)] ;
ylabel(timetext)
xlabel(modelsumup)
for iplot = 2:N+1
plot(x,Q1(iplot,:),x,Q2(iplot,:),'linewidth',1) ; axis tight ;
pbaspect([2,1,1])
legend('Density of inhabitants','Density of firms')
timetext = ['k =', num2str(iplot-1)] ;
ylabel(timetext)
xlabel(modelsumup)
gif
end