-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMP_Embedded_RealTimeAnalyzer.py
116 lines (104 loc) · 4.08 KB
/
MP_Embedded_RealTimeAnalyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
CS501 Group 16
Fall 2018
Mission Planner Embedded Real-Time Analyzer
Author: Ryan Kelly
This script reads temporary data from EmbeddedDataTemp.csv and does several things:
- Plots the live data to the top subplot of a matplotlib animated plot.
- Uses a threshold to capture an "event", slice it, and display the most recent event on the the lower subplot.
- Writes all the data to a file called "EmbeddedDataFull.csv" upon closing the matplotlib plot.
- Writes an array of all sliced events to "EmbeddedDataImpacts.csv"
- for all the above, the user can select which of (16) telemetry parameters to display, and all 16 parameters are written
to both files.
- Opens a seperate thread to process the most recent impact through the kNN/DTW classifier, without interfering
with data capture rates.
BR,BL,FL,FR
time
time
xgyro
ygyro
zgyro
xacc
yacc
zacc
pitch
roll
yaw
navroll
navpitch
navbearing
rollinput
pitchinput
throttleinput
"""
import time
from threading import Thread
import os
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib import style
import csv
#from multi_param_learn import multi_param_learn
os.chdir("C:\Program Files (x86)\Mission Planner")
style.use('fivethirtyeight')
fig = plt.figure()
plt.title("Live Data")
plt.xlabel("Time (ms)")
plt.ylabel("MP xGyro Data")
ax = fig.add_subplot(2,1,1)
bx = fig.add_subplot(2,1,2)
line, = ax.plot([], [])
eventList = [[]]
paramList = [["time(ms)"],["xGyro"],["yGyro"],["zGyro"],["xAcc"],["yAcc"],["zAcc"],["pitch"],["roll"],["yaw"],["navRoll"],["navPitch"],["navBearing"],["rollInput"],["pitchInput"],["throttleInput"]]
sampleRate = 20
thresholdSetting = 1500
impactCounter = 0
eventArray = [[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]] #zeros required for proper initializing
def animate(i): #this function is the main plotting loop, as well as other main functions of the program (like data gathering)
data =[] #reset to empty
with open('EmbeddedDataTemp.csv') as csvfile: #update the data
readCSV = csv.reader(csvfile, delimiter=',')
for row in readCSV:
row = map(float, row) #convert to integer
data.append(row)
x = data[0]
y = data[1]
maxValue = max(y)
if maxValue > 2000:
maxIndex = y.index(maxValue)
#print(maxValue)
if 15 <= maxIndex <= 25: #This if statement controls what to plot on the subplot
y1 = y[maxIndex-10:maxIndex+20]
x1 = x[maxIndex-10:maxIndex+20]
bx.clear()
bx.plot(x1,y1)
if eventArray[-16][0] != x1[0]: #this if statement writes to the eventArray (trimmed data)
for i in range(0, len(paramList)):
data[i] = data[i][maxIndex-10:maxIndex+20]
eventArray.append(data[i])
print("Event Detected...Classifying...")
line.set_data(x, y)
ax.clear()
ax.plot(x, y)
if paramList[0][-1] == "time(ms)" or paramList[0][-1]< data[0][0]: #Check to make sure it's not a duplicate time series
for i in range(0,len(paramList)):
paramList[i].extend(data[i]) #add the new time series to the full cumulative series#
return line,
def handle_close(evt): #handler for closing the plot: Creates the full timeseries output file if needed for post analysis.
print('Mission Planner Real_Time Analyzer Closed.')
k=0
while os.path.exists("EmbeddedDataFull%s.csv" %k):
k += 1
print("Full Data written to file: EmbeddedDataFull%s.csv" %k)
with open('EmbeddedDataFull%s.csv' %k, "wb") as dataFile:
writer = csv.writer(dataFile)
for i in range (0,len(paramList)):
writer.writerow(paramList[i])
with open('EmbeddedDataImpacts%s.csv' %k, "wb") as dataFile2:
writer = csv.writer(dataFile2)
for i in range (0,len(eventArray)):
writer.writerow(eventArray[i])
fig.canvas.mpl_connect('close_event', handle_close)
anim = animation.FuncAnimation(fig, animate, interval =250, blit=False)
plt.show()
print("Mission Planner Real-Time Analyzer Start!")