-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_timemachine.py
182 lines (148 loc) · 6.94 KB
/
test_timemachine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
from timemachine import TimeMachine
from thumbnail_api import Rectangle
from video_decoder import decode_video_frames
import cv2 # for saving images
def save_frame_as_jpg(frame, filename):
"""Save a single frame as JPG."""
# Convert from RGB to BGR for cv2
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
cv2.imwrite(filename, frame_bgr)
print(f"Saved {filename}")
def test_timemachine_download():
"""Test TimeMachine video download against direct tile download."""
# Initialize TimeMachine
print("Initializing TimeMachine...")
timemachine = TimeMachine("https://tiles.cmucreatelab.org/ecam/timemachines/clairton4/2024-10-23.timemachine")
# Define the centered rectangle with y-offset of 800
rect = Rectangle(x1=356, y1=1000, x2=1068, y2=1400) # y values increased by 800
# Download via TimeMachine
print("\nDownloading via TimeMachine.download_video...")
tm_frames = timemachine.download_video(
start_frame_no=0,
nframes=15,
rect=rect,
subsample=2
)
# Download the tile directly for comparison
print("\nDownloading tile directly for comparison...")
tile_url = "https://tiles.cmucreatelab.org/ecam/timemachines/clairton4/2024-10-23.timemachine/crf26-12fps-1424x800/2/4/0.mp4"
full_frames, _ = decode_video_frames(
video_url=tile_url,
start_frame=0,
n_frames=15
)
# Crop the directly downloaded frames
crop_rect = Rectangle(x1=356, y1=200, x2=1068, y2=600) # Original centered rectangle
cropped_frames = full_frames[:, crop_rect.y1:crop_rect.y2, crop_rect.x1:crop_rect.x2, :]
# Verify shapes
print("\nVerifying dimensions...")
expected_shape = (15, 400, 712, 3) # 15 frames, half height/width, RGB
assert tm_frames.shape == expected_shape, f"TimeMachine frames shape {tm_frames.shape} != expected {expected_shape}"
assert cropped_frames.shape == expected_shape, f"Cropped frames shape {cropped_frames.shape} != expected {expected_shape}"
# Compare the frames
print("Comparing frame content...")
assert_array_equal(
tm_frames,
cropped_frames,
err_msg="Frame content mismatch between TimeMachine and direct download"
)
# Print some statistics
print("\nVideo Statistics:")
print(f"Frame dimensions: {tm_frames.shape[1]}x{tm_frames.shape[2]}")
for channel, color in enumerate(['Red', 'Green', 'Blue']):
channel_sum = tm_frames[:, :, :, channel].sum()
print(f"{color} channel sum: {channel_sum:,}")
print("\nFirst test passed successfully!")
def average_pool_2x2(frames):
"""
Downscale video frames by averaging 2x2 pixel blocks.
Args:
frames: numpy array of shape (n_frames, height, width, 3)
Returns:
numpy array of shape (n_frames, height//2, width//2, 3) with dtype uint8
"""
n_frames, height, width, channels = frames.shape
pooled = frames.reshape(n_frames, height//2, 2, width//2, 2, channels)
# Convert to float for averaging, then back to uint8
return np.round(pooled.mean(axis=(2, 4))).astype(np.uint8)
def test_timemachine_scale():
"""Test TimeMachine video download at different scales."""
print("\n=== Starting scale comparison test ===")
print("Initializing TimeMachine...")
timemachine = TimeMachine("https://tiles.cmucreatelab.org/ecam/timemachines/clairton4/2024-10-23.timemachine")
# Original rectangle with y-offset of 800
rect_subsampled = Rectangle(x1=356, y1=1000, x2=1068, y2=1400)
# Download at subsample=2
print("\nDownloading at subsample=2...")
frames_subsampled = timemachine.download_video(
start_frame_no=0,
nframes=15,
rect=rect_subsampled,
subsample=2
)
# Double all coordinates for full resolution
rect_full = Rectangle(
x1=rect_subsampled.x1 * 2,
y1=rect_subsampled.y1 * 2,
x2=rect_subsampled.x2 * 2,
y2=rect_subsampled.y2 * 2
)
print("\nDownloading at full resolution (subsample=1)...")
frames_full = timemachine.download_video(
start_frame_no=0,
nframes=15,
rect=rect_full,
subsample=1
)
# Downscale the full resolution frames
print("Downscaling full resolution frames...")
frames_downscaled = average_pool_2x2(frames_full)
# Save first frames as JPG for visual comparison
save_frame_as_jpg(frames_subsampled[0], "subsample2_frame0.jpg")
save_frame_as_jpg(frames_downscaled[0], "subsample1_downscaled_frame0.jpg")
# Verify shapes
print("\nVerifying dimensions...")
assert frames_subsampled.shape == frames_downscaled.shape, (
f"Shape mismatch: subsampled {frames_subsampled.shape} != "
f"downscaled {frames_downscaled.shape}"
)
# Calculate differences and statistics
diff = frames_subsampled.astype(np.float32) - frames_downscaled.astype(np.float32)
squared_diff = diff * diff
rms = np.sqrt(np.mean(squared_diff))
# Calculate mean intensity of both images
mean_intensity_subsampled = np.mean(frames_subsampled)
mean_intensity_downscaled = np.mean(frames_downscaled)
overall_mean = (mean_intensity_subsampled + mean_intensity_downscaled) / 2
# Calculate RMS to mean ratio
rms_to_mean_ratio = rms / overall_mean
print("\nError Metrics:")
print(f"RMS error: {rms:.2f}")
print(f"Mean intensity (subsample=2): {mean_intensity_subsampled:.2f}")
print(f"Mean intensity (subsample=1 downscaled): {mean_intensity_downscaled:.2f}")
print(f"Overall mean intensity: {overall_mean:.2f}")
print(f"RMS/Mean ratio: {rms_to_mean_ratio:.4f}")
# Channel-specific differences
for channel, color in enumerate(['Red', 'Green', 'Blue']):
channel_diff = diff[:, :, :, channel]
channel_rms = np.sqrt(np.mean(channel_diff * channel_diff))
channel_mean = (np.mean(frames_subsampled[:, :, :, channel]) +
np.mean(frames_downscaled[:, :, :, channel])) / 2
print(f"\n{color} channel:")
print(f" RMS error: {channel_rms:.2f}")
print(f" Mean intensity: {channel_mean:.2f}")
print(f" RMS/Mean ratio: {(channel_rms/channel_mean):.4f}")
# Save difference visualization
diff_visualization = np.clip(np.abs(diff[0]) * 10, 0, 255).astype(np.uint8) # Scale up differences for visibility
save_frame_as_jpg(diff_visualization, "frame0_differences.jpg")
# Assert based on RMS/Mean ratio instead of maximum difference
assert rms_to_mean_ratio <= 0.1, f"RMS/Mean ratio {rms_to_mean_ratio:.4f} exceeds threshold of 0.1"
print("\nSecond test passed successfully!")
if __name__ == '__main__':
# Run both tests
print("=== Running direct download comparison test ===")
test_timemachine_download()
print("\n=== Running scale comparison test ===")
test_timemachine_scale()