-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhaze_detection_3d.py
91 lines (65 loc) · 3.87 KB
/
haze_detection_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Capture arbitrarily long amounts of videos
import numpy as np
import os
from itertools import product, chain
from common import *
PatchWidth = 8
PatchHeight = 8
PatchDepth = 8
PatchOverlapX = 4
PatchOverlapY = 4
PatchOverlapZ = 4
PatchStrideX = PatchWidth - PatchOverlapX
PatchStrideY = PatchHeight - PatchOverlapY
PatchStrideZ = PatchDepth - PatchOverlapZ
def solve_3d_haze_detection_v1(vid0, vid1, verbose=True):
depth, height, width = vid0.shape[:3]
frame_pixels = height * width * 4
pixels = height * width * depth
with Stopwatch(f"solve_3d_haze_detection_v1 {width}x{height}x{depth}, {pixels} pixels", print_stats = verbose):
def v(i, j, k, o):
return (i * frame_pixels) + (j * width + k) * 4 + o
def equations():
for i, j, k, l in product(range(depth), range(height), range(width), range(3)):
yield [(1, v(i, j, k, l)), (vid0[i, j, k, l], v(i, j, k, 3)), vid1[i, j, k, l]]
for i, j, k, l in product(range(depth - 1), range(height), range(width), [3, 0, 1, 2]): # depth smoothness
yield [(1, v(i, j, k, l)), (-1, v(i + 1, j, k, l)), 0]
for i, j, k, l in product(range(depth), range(height), range(width - 1), [3, 0, 1, 2]): # horizontal smoothness
yield [(1, v(i, j, k, l)), (-1, v(i, j, k + 1, l)), 0]
for i, j, k, l in product(range(depth), range(height - 1), range(width), [3, 0, 1, 2]): # vertical smoothness
yield [(1, v(i, j, k, l)), (-1, v(i, j + 1, k, l)), 0]
haze_image = solve_sparse_equations(equations(), (0,1))
for i in range(0, pixels * 4, 4):
haze_image[i + 3] = 1 - haze_image[i]
return haze_image.reshape(depth, height, width, 4)
def solve_3d_haze_detection_v2(vid0, vid1, verbose=False):
depth, height, width = vid0.shape[:3]
with Stopwatch(f"solve_haze_detection_v2 {depth}x{width}x{height}, {depth*width*height} pixels", print_stats=verbose) as st:
haze_image = np.zeros((depth, height, width, 4))
weight_sum = np.zeros((depth, height, width, 1))
# Calculate minimum number of patches required to completely cover the image, with overlap greater than or equal to patch_overlap_x, patch_overlap_y
max_x_inclusive = width - PatchWidth + 1
max_y_inclusive = height - PatchHeight + 1
max_z_inclusive = depth - PatchDepth + 1
num_patches_x = max(1, int(np.ceil(max_x_inclusive / PatchStrideX)))
num_patches_y = max(1, int(np.ceil(max_y_inclusive / PatchStrideY)))
num_patches_z = max(1, int(np.ceil(max_z_inclusive / PatchStrideZ)))
# Create a weight matrix for the patch (higher weight in the center, lower at the edges)
for z in np.linspace(0, depth - PatchDepth, num_patches_z, dtype=int):
for y in np.linspace(0, height - PatchHeight, num_patches_y, dtype=int):
for x in np.linspace(0, width - PatchWidth, num_patches_x, dtype=int):
# Define patch boundaries
x_end = x + PatchWidth
y_end = y + PatchHeight
z_end = z + PatchDepth
# Extract patches
patch_vid0 = vid0[z:z_end, y:y_end, x:x_end]
patch_vid1 = vid1[z:z_end, y:y_end, x:x_end]
# Solve haze removal for the patch
patch_haze = solve_3d_haze_detection_v1(patch_vid0, patch_vid1, verbose=verbose)
# Add the weighted patch to the final image
haze_image[z:z_end, y:y_end, x:x_end] += patch_haze * PatchWeight3D[:, :, :, np.newaxis]
weight_sum[z:z_end, y:y_end, x:x_end] += PatchWeight3D[:, :, :, np.newaxis]
# Normalize the final image by the total weights
haze_image /= weight_sum
return haze_image