-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathTypeTools.hpp
1847 lines (1646 loc) · 74.1 KB
/
TypeTools.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2017-2025, University of Cincinnati, developed by Henry Schreiner
// under NSF AWARD 1414736 and by the respective contributors.
// All rights reserved.
//
// SPDX-License-Identifier: BSD-3-Clause
#pragma once
// IWYU pragma: private, include "CLI/CLI.hpp"
// [CLI11:public_includes:set]
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <exception>
#include <limits>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
// [CLI11:public_includes:end]
#include "Encoding.hpp"
#include "StringTools.hpp"
namespace CLI {
// [CLI11:type_tools_hpp:verbatim]
// Type tools
// Utilities for type enabling
namespace detail {
// Based generally on https://rmf.io/cxx11/almost-static-if
/// Simple empty scoped class
enum class enabler {};
/// An instance to use in EnableIf
constexpr enabler dummy = {};
} // namespace detail
/// A copy of enable_if_t from C++14, compatible with C++11.
///
/// We could check to see if C++14 is being used, but it does not hurt to redefine this
/// (even Google does this: https://github.com/google/skia/blob/main/include/private/SkTLogic.h)
/// It is not in the std namespace anyway, so no harm done.
template <bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
/// A copy of std::void_t from C++17 (helper for C++11 and C++14)
template <typename... Ts> struct make_void {
using type = void;
};
/// A copy of std::void_t from C++17 - same reasoning as enable_if_t, it does not hurt to redefine
template <typename... Ts> using void_t = typename make_void<Ts...>::type;
/// A copy of std::conditional_t from C++14 - same reasoning as enable_if_t, it does not hurt to redefine
template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type;
/// Check to see if something is bool (fail check by default)
template <typename T> struct is_bool : std::false_type {};
/// Check to see if something is bool (true if actually a bool)
template <> struct is_bool<bool> : std::true_type {};
/// Check to see if something is a shared pointer
template <typename T> struct is_shared_ptr : std::false_type {};
/// Check to see if something is a shared pointer (True if really a shared pointer)
template <typename T> struct is_shared_ptr<std::shared_ptr<T>> : std::true_type {};
/// Check to see if something is a shared pointer (True if really a shared pointer)
template <typename T> struct is_shared_ptr<const std::shared_ptr<T>> : std::true_type {};
/// Check to see if something is copyable pointer
template <typename T> struct is_copyable_ptr {
static bool const value = is_shared_ptr<T>::value || std::is_pointer<T>::value;
};
/// This can be specialized to override the type deduction for IsMember.
template <typename T> struct IsMemberType {
using type = T;
};
/// The main custom type needed here is const char * should be a string.
template <> struct IsMemberType<const char *> {
using type = std::string;
};
namespace adl_detail {
/// Check for existence of user-supplied lexical_cast.
///
/// This struct has to be in a separate namespace so that it doesn't see our lexical_cast overloads in CLI::detail.
/// Standard says it shouldn't see them if it's defined before the corresponding lexical_cast declarations, but this
/// requires a working implementation of two-phase lookup, and not all compilers can boast that (msvc, ahem).
template <typename T, typename S = std::string> class is_lexical_castable {
template <typename TT, typename SS>
static auto test(int) -> decltype(lexical_cast(std::declval<const SS &>(), std::declval<TT &>()), std::true_type());
template <typename, typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, S>(0))::value;
};
} // namespace adl_detail
namespace detail {
// These are utilities for IsMember and other transforming objects
/// Handy helper to access the element_type generically. This is not part of is_copyable_ptr because it requires that
/// pointer_traits<T> be valid.
/// not a pointer
template <typename T, typename Enable = void> struct element_type {
using type = T;
};
template <typename T> struct element_type<T, typename std::enable_if<is_copyable_ptr<T>::value>::type> {
using type = typename std::pointer_traits<T>::element_type;
};
/// Combination of the element type and value type - remove pointer (including smart pointers) and get the value_type of
/// the container
template <typename T> struct element_value_type {
using type = typename element_type<T>::type::value_type;
};
/// Adaptor for set-like structure: This just wraps a normal container in a few utilities that do almost nothing.
template <typename T, typename _ = void> struct pair_adaptor : std::false_type {
using value_type = typename T::value_type;
using first_type = typename std::remove_const<value_type>::type;
using second_type = typename std::remove_const<value_type>::type;
/// Get the first value (really just the underlying value)
template <typename Q> static auto first(Q &&pair_value) -> decltype(std::forward<Q>(pair_value)) {
return std::forward<Q>(pair_value);
}
/// Get the second value (really just the underlying value)
template <typename Q> static auto second(Q &&pair_value) -> decltype(std::forward<Q>(pair_value)) {
return std::forward<Q>(pair_value);
}
};
/// Adaptor for map-like structure (true version, must have key_type and mapped_type).
/// This wraps a mapped container in a few utilities access it in a general way.
template <typename T>
struct pair_adaptor<
T,
conditional_t<false, void_t<typename T::value_type::first_type, typename T::value_type::second_type>, void>>
: std::true_type {
using value_type = typename T::value_type;
using first_type = typename std::remove_const<typename value_type::first_type>::type;
using second_type = typename std::remove_const<typename value_type::second_type>::type;
/// Get the first value (really just the underlying value)
template <typename Q> static auto first(Q &&pair_value) -> decltype(std::get<0>(std::forward<Q>(pair_value))) {
return std::get<0>(std::forward<Q>(pair_value));
}
/// Get the second value (really just the underlying value)
template <typename Q> static auto second(Q &&pair_value) -> decltype(std::get<1>(std::forward<Q>(pair_value))) {
return std::get<1>(std::forward<Q>(pair_value));
}
};
// Warning is suppressed due to "bug" in gcc<5.0 and gcc 7.0 with c++17 enabled that generates a -Wnarrowing warning
// in the unevaluated context even if the function that was using this wasn't used. The standard says narrowing in
// brace initialization shouldn't be allowed but for backwards compatibility gcc allows it in some contexts. It is a
// little fuzzy what happens in template constructs and I think that was something GCC took a little while to work out.
// But regardless some versions of gcc generate a warning when they shouldn't from the following code so that should be
// suppressed
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnarrowing"
#endif
// check for constructibility from a specific type and copy assignable used in the parse detection
template <typename T, typename C> class is_direct_constructible {
template <typename TT, typename CC>
static auto test(int, std::true_type) -> decltype(
// NVCC warns about narrowing conversions here
#ifdef __CUDACC__
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_suppress 2361
#else
#pragma diag_suppress 2361
#endif
#endif
TT{std::declval<CC>()}
#ifdef __CUDACC__
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_default 2361
#else
#pragma diag_default 2361
#endif
#endif
,
std::is_move_assignable<TT>());
template <typename TT, typename CC> static auto test(int, std::false_type) -> std::false_type;
template <typename, typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, C>(0, typename std::is_constructible<T, C>::type()))::value;
};
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
// Check for output streamability
// Based on https://stackoverflow.com/questions/22758291/how-can-i-detect-if-a-type-can-be-streamed-to-an-stdostream
template <typename T, typename S = std::ostringstream> class is_ostreamable {
template <typename TT, typename SS>
static auto test(int) -> decltype(std::declval<SS &>() << std::declval<TT>(), std::true_type());
template <typename, typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, S>(0))::value;
};
/// Check for input streamability
template <typename T, typename S = std::istringstream> class is_istreamable {
template <typename TT, typename SS>
static auto test(int) -> decltype(std::declval<SS &>() >> std::declval<TT &>(), std::true_type());
template <typename, typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, S>(0))::value;
};
/// Check for complex
template <typename T> class is_complex {
template <typename TT>
static auto test(int) -> decltype(std::declval<TT>().real(), std::declval<TT>().imag(), std::true_type());
template <typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T>(0))::value;
};
/// Templated operation to get a value from a stream
template <typename T, enable_if_t<is_istreamable<T>::value, detail::enabler> = detail::dummy>
bool from_stream(const std::string &istring, T &obj) {
std::istringstream is;
is.str(istring);
is >> obj;
return !is.fail() && !is.rdbuf()->in_avail();
}
template <typename T, enable_if_t<!is_istreamable<T>::value, detail::enabler> = detail::dummy>
bool from_stream(const std::string & /*istring*/, T & /*obj*/) {
return false;
}
// check to see if an object is a mutable container (fail by default)
template <typename T, typename _ = void> struct is_mutable_container : std::false_type {};
/// type trait to test if a type is a mutable container meaning it has a value_type, it has an iterator, a clear, and
/// end methods and an insert function. And for our purposes we exclude std::string and types that can be constructed
/// from a std::string
template <typename T>
struct is_mutable_container<
T,
conditional_t<false,
void_t<typename T::value_type,
decltype(std::declval<T>().end()),
decltype(std::declval<T>().clear()),
decltype(std::declval<T>().insert(std::declval<decltype(std::declval<T>().end())>(),
std::declval<const typename T::value_type &>()))>,
void>> : public conditional_t<std::is_constructible<T, std::string>::value ||
std::is_constructible<T, std::wstring>::value,
std::false_type,
std::true_type> {};
// check to see if an object is a mutable container (fail by default)
template <typename T, typename _ = void> struct is_readable_container : std::false_type {};
/// type trait to test if a type is a container meaning it has a value_type, it has an iterator, and an end
/// method.
template <typename T>
struct is_readable_container<
T,
conditional_t<false, void_t<decltype(std::declval<T>().end()), decltype(std::declval<T>().begin())>, void>>
: public std::true_type {};
// check to see if an object is a wrapper (fail by default)
template <typename T, typename _ = void> struct is_wrapper : std::false_type {};
// check if an object is a wrapper (it has a value_type defined)
template <typename T>
struct is_wrapper<T, conditional_t<false, void_t<typename T::value_type>, void>> : public std::true_type {};
// Check for tuple like types, as in classes with a tuple_size type trait
// Even though in C++26 std::complex gains a std::tuple interface, for our purposes we treat is as NOT a tuple
template <typename S> class is_tuple_like {
template <typename SS, enable_if_t<!is_complex<SS>::value, detail::enabler> = detail::dummy>
// static auto test(int)
// -> decltype(std::conditional<(std::tuple_size<SS>::value > 0), std::true_type, std::false_type>::type());
static auto test(int) -> decltype(std::tuple_size<typename std::decay<SS>::type>::value, std::true_type{});
template <typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<S>(0))::value;
};
/// This will only trigger for actual void type
template <typename T, typename Enable = void> struct type_count_base {
static const int value{0};
};
/// Type size for regular object types that do not look like a tuple
template <typename T>
struct type_count_base<T,
typename std::enable_if<!is_tuple_like<T>::value && !is_mutable_container<T>::value &&
!std::is_void<T>::value>::type> {
static constexpr int value{1};
};
/// the base tuple size
template <typename T>
struct type_count_base<T, typename std::enable_if<is_tuple_like<T>::value && !is_mutable_container<T>::value>::type> {
static constexpr int value{// cppcheck-suppress unusedStructMember
std::tuple_size<typename std::decay<T>::type>::value};
};
/// Type count base for containers is the type_count_base of the individual element
template <typename T> struct type_count_base<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
static constexpr int value{type_count_base<typename T::value_type>::value};
};
/// Convert an object to a string (directly forward if this can become a string)
template <typename T, enable_if_t<std::is_convertible<T, std::string>::value, detail::enabler> = detail::dummy>
auto to_string(T &&value) -> decltype(std::forward<T>(value)) {
return std::forward<T>(value);
}
/// Construct a string from the object
template <typename T,
enable_if_t<std::is_constructible<std::string, T>::value && !std::is_convertible<T, std::string>::value,
detail::enabler> = detail::dummy>
std::string to_string(T &&value) {
return std::string(value); // NOLINT(google-readability-casting)
}
/// Convert an object to a string (streaming must be supported for that type)
template <typename T,
enable_if_t<!std::is_convertible<T, std::string>::value && !std::is_constructible<std::string, T>::value &&
is_ostreamable<T>::value,
detail::enabler> = detail::dummy>
std::string to_string(T &&value) {
std::stringstream stream;
stream << value;
return stream.str();
}
// additional forward declarations
/// Print tuple value string for tuples of size ==1
template <typename T,
enable_if_t<!std::is_convertible<T, std::string>::value && !std::is_constructible<std::string, T>::value &&
!is_ostreamable<T>::value && is_tuple_like<T>::value && type_count_base<T>::value == 1,
detail::enabler> = detail::dummy>
inline std::string to_string(T &&value);
/// Print tuple value string for tuples of size > 1
template <typename T,
enable_if_t<!std::is_convertible<T, std::string>::value && !std::is_constructible<std::string, T>::value &&
!is_ostreamable<T>::value && is_tuple_like<T>::value && type_count_base<T>::value >= 2,
detail::enabler> = detail::dummy>
inline std::string to_string(T &&value);
/// If conversion is not supported, return an empty string (streaming is not supported for that type)
template <
typename T,
enable_if_t<!std::is_convertible<T, std::string>::value && !std::is_constructible<std::string, T>::value &&
!is_ostreamable<T>::value && !is_readable_container<typename std::remove_const<T>::type>::value &&
!is_tuple_like<T>::value,
detail::enabler> = detail::dummy>
inline std::string to_string(T &&) {
return {};
}
/// convert a readable container to a string
template <typename T,
enable_if_t<!std::is_convertible<T, std::string>::value && !std::is_constructible<std::string, T>::value &&
!is_ostreamable<T>::value && is_readable_container<T>::value,
detail::enabler> = detail::dummy>
inline std::string to_string(T &&variable) {
auto cval = variable.begin();
auto end = variable.end();
if(cval == end) {
return {"{}"};
}
std::vector<std::string> defaults;
while(cval != end) {
defaults.emplace_back(CLI::detail::to_string(*cval));
++cval;
}
return {"[" + detail::join(defaults) + "]"};
}
/// Convert a tuple like object to a string
/// forward declarations for tuple_value_strings
template <typename T, std::size_t I>
inline typename std::enable_if<I == type_count_base<T>::value, std::string>::type tuple_value_string(T && /*value*/);
/// Recursively generate the tuple value string
template <typename T, std::size_t I>
inline typename std::enable_if<(I < type_count_base<T>::value), std::string>::type tuple_value_string(T &&value);
/// Print tuple value string for tuples of size ==1
template <typename T,
enable_if_t<!std::is_convertible<T, std::string>::value && !std::is_constructible<std::string, T>::value &&
!is_ostreamable<T>::value && is_tuple_like<T>::value && type_count_base<T>::value == 1,
detail::enabler>>
inline std::string to_string(T &&value) {
return to_string(std::get<0>(value));
}
/// Print tuple value string for tuples of size > 1
template <typename T,
enable_if_t<!std::is_convertible<T, std::string>::value && !std::is_constructible<std::string, T>::value &&
!is_ostreamable<T>::value && is_tuple_like<T>::value && type_count_base<T>::value >= 2,
detail::enabler>>
inline std::string to_string(T &&value) {
auto tname = std::string(1, '[') + tuple_value_string<T, 0>(value);
tname.push_back(']');
return tname;
}
/// Empty string if the index > tuple size
template <typename T, std::size_t I>
inline typename std::enable_if<I == type_count_base<T>::value, std::string>::type tuple_value_string(T && /*value*/) {
return std::string{};
}
/// Recursively generate the tuple value string
template <typename T, std::size_t I>
inline typename std::enable_if<(I < type_count_base<T>::value), std::string>::type tuple_value_string(T &&value) {
auto str = std::string{to_string(std::get<I>(value))} + ',' + tuple_value_string<T, I + 1>(value);
if(str.back() == ',')
str.pop_back();
return str;
}
/// special template overload
template <typename T1,
typename T2,
typename T,
enable_if_t<std::is_same<T1, T2>::value, detail::enabler> = detail::dummy>
auto checked_to_string(T &&value) -> decltype(to_string(std::forward<T>(value))) {
return to_string(std::forward<T>(value));
}
/// special template overload
template <typename T1,
typename T2,
typename T,
enable_if_t<!std::is_same<T1, T2>::value, detail::enabler> = detail::dummy>
std::string checked_to_string(T &&) {
return std::string{};
}
/// get a string as a convertible value for arithmetic types
template <typename T, enable_if_t<std::is_arithmetic<T>::value, detail::enabler> = detail::dummy>
std::string value_string(const T &value) {
return std::to_string(value);
}
/// get a string as a convertible value for enumerations
template <typename T, enable_if_t<std::is_enum<T>::value, detail::enabler> = detail::dummy>
std::string value_string(const T &value) {
return std::to_string(static_cast<typename std::underlying_type<T>::type>(value));
}
/// for other types just use the regular to_string function
template <typename T,
enable_if_t<!std::is_enum<T>::value && !std::is_arithmetic<T>::value, detail::enabler> = detail::dummy>
auto value_string(const T &value) -> decltype(to_string(value)) {
return to_string(value);
}
/// template to get the underlying value type if it exists or use a default
template <typename T, typename def, typename Enable = void> struct wrapped_type {
using type = def;
};
/// Type size for regular object types that do not look like a tuple
template <typename T, typename def> struct wrapped_type<T, def, typename std::enable_if<is_wrapper<T>::value>::type> {
using type = typename T::value_type;
};
/// Set of overloads to get the type size of an object
/// forward declare the subtype_count structure
template <typename T> struct subtype_count;
/// forward declare the subtype_count_min structure
template <typename T> struct subtype_count_min;
/// This will only trigger for actual void type
template <typename T, typename Enable = void> struct type_count {
static const int value{0};
};
/// Type size for regular object types that do not look like a tuple
template <typename T>
struct type_count<T,
typename std::enable_if<!is_wrapper<T>::value && !is_tuple_like<T>::value && !is_complex<T>::value &&
!std::is_void<T>::value>::type> {
static constexpr int value{1};
};
/// Type size for complex since it sometimes looks like a wrapper
template <typename T> struct type_count<T, typename std::enable_if<is_complex<T>::value>::type> {
static constexpr int value{2};
};
/// Type size of types that are wrappers,except complex and tuples(which can also be wrappers sometimes)
template <typename T> struct type_count<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
static constexpr int value{subtype_count<typename T::value_type>::value};
};
/// Type size of types that are wrappers,except containers complex and tuples(which can also be wrappers sometimes)
template <typename T>
struct type_count<T,
typename std::enable_if<is_wrapper<T>::value && !is_complex<T>::value && !is_tuple_like<T>::value &&
!is_mutable_container<T>::value>::type> {
static constexpr int value{type_count<typename T::value_type>::value};
};
/// 0 if the index > tuple size
template <typename T, std::size_t I>
constexpr typename std::enable_if<I == type_count_base<T>::value, int>::type tuple_type_size() {
return 0;
}
/// Recursively generate the tuple type name
template <typename T, std::size_t I>
constexpr typename std::enable_if < I<type_count_base<T>::value, int>::type tuple_type_size() {
return subtype_count<typename std::tuple_element<I, T>::type>::value + tuple_type_size<T, I + 1>();
}
/// Get the type size of the sum of type sizes for all the individual tuple types
template <typename T> struct type_count<T, typename std::enable_if<is_tuple_like<T>::value>::type> {
static constexpr int value{tuple_type_size<T, 0>()};
};
/// definition of subtype count
template <typename T> struct subtype_count {
static constexpr int value{is_mutable_container<T>::value ? expected_max_vector_size : type_count<T>::value};
};
/// This will only trigger for actual void type
template <typename T, typename Enable = void> struct type_count_min {
static const int value{0};
};
/// Type size for regular object types that do not look like a tuple
template <typename T>
struct type_count_min<
T,
typename std::enable_if<!is_mutable_container<T>::value && !is_tuple_like<T>::value && !is_wrapper<T>::value &&
!is_complex<T>::value && !std::is_void<T>::value>::type> {
static constexpr int value{type_count<T>::value};
};
/// Type size for complex since it sometimes looks like a wrapper
template <typename T> struct type_count_min<T, typename std::enable_if<is_complex<T>::value>::type> {
static constexpr int value{1};
};
/// Type size min of types that are wrappers,except complex and tuples(which can also be wrappers sometimes)
template <typename T>
struct type_count_min<
T,
typename std::enable_if<is_wrapper<T>::value && !is_complex<T>::value && !is_tuple_like<T>::value>::type> {
static constexpr int value{subtype_count_min<typename T::value_type>::value};
};
/// 0 if the index > tuple size
template <typename T, std::size_t I>
constexpr typename std::enable_if<I == type_count_base<T>::value, int>::type tuple_type_size_min() {
return 0;
}
/// Recursively generate the tuple type name
template <typename T, std::size_t I>
constexpr typename std::enable_if < I<type_count_base<T>::value, int>::type tuple_type_size_min() {
return subtype_count_min<typename std::tuple_element<I, T>::type>::value + tuple_type_size_min<T, I + 1>();
}
/// Get the type size of the sum of type sizes for all the individual tuple types
template <typename T> struct type_count_min<T, typename std::enable_if<is_tuple_like<T>::value>::type> {
static constexpr int value{tuple_type_size_min<T, 0>()};
};
/// definition of subtype count
template <typename T> struct subtype_count_min {
static constexpr int value{is_mutable_container<T>::value
? ((type_count<T>::value < expected_max_vector_size) ? type_count<T>::value : 0)
: type_count_min<T>::value};
};
/// This will only trigger for actual void type
template <typename T, typename Enable = void> struct expected_count {
static const int value{0};
};
/// For most types the number of expected items is 1
template <typename T>
struct expected_count<T,
typename std::enable_if<!is_mutable_container<T>::value && !is_wrapper<T>::value &&
!std::is_void<T>::value>::type> {
static constexpr int value{1};
};
/// number of expected items in a vector
template <typename T> struct expected_count<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
static constexpr int value{expected_max_vector_size};
};
/// number of expected items in a vector
template <typename T>
struct expected_count<T, typename std::enable_if<!is_mutable_container<T>::value && is_wrapper<T>::value>::type> {
static constexpr int value{expected_count<typename T::value_type>::value};
};
// Enumeration of the different supported categorizations of objects
enum class object_category : int {
char_value = 1,
integral_value = 2,
unsigned_integral = 4,
enumeration = 6,
boolean_value = 8,
floating_point = 10,
number_constructible = 12,
double_constructible = 14,
integer_constructible = 16,
// string like types
string_assignable = 23,
string_constructible = 24,
wstring_assignable = 25,
wstring_constructible = 26,
other = 45,
// special wrapper or container types
wrapper_value = 50,
complex_number = 60,
tuple_value = 70,
container_value = 80,
};
/// Set of overloads to classify an object according to type
/// some type that is not otherwise recognized
template <typename T, typename Enable = void> struct classify_object {
static constexpr object_category value{object_category::other};
};
/// Signed integers
template <typename T>
struct classify_object<
T,
typename std::enable_if<std::is_integral<T>::value && !std::is_same<T, char>::value && std::is_signed<T>::value &&
!is_bool<T>::value && !std::is_enum<T>::value>::type> {
static constexpr object_category value{object_category::integral_value};
};
/// Unsigned integers
template <typename T>
struct classify_object<T,
typename std::enable_if<std::is_integral<T>::value && std::is_unsigned<T>::value &&
!std::is_same<T, char>::value && !is_bool<T>::value>::type> {
static constexpr object_category value{object_category::unsigned_integral};
};
/// single character values
template <typename T>
struct classify_object<T, typename std::enable_if<std::is_same<T, char>::value && !std::is_enum<T>::value>::type> {
static constexpr object_category value{object_category::char_value};
};
/// Boolean values
template <typename T> struct classify_object<T, typename std::enable_if<is_bool<T>::value>::type> {
static constexpr object_category value{object_category::boolean_value};
};
/// Floats
template <typename T> struct classify_object<T, typename std::enable_if<std::is_floating_point<T>::value>::type> {
static constexpr object_category value{object_category::floating_point};
};
#if defined _MSC_VER
// in MSVC wstring should take precedence if available this isn't as useful on other compilers due to the broader use of
// utf-8 encoding
#define WIDE_STRING_CHECK \
!std::is_assignable<T &, std::wstring>::value && !std::is_constructible<T, std::wstring>::value
#define STRING_CHECK true
#else
#define WIDE_STRING_CHECK true
#define STRING_CHECK !std::is_assignable<T &, std::string>::value && !std::is_constructible<T, std::string>::value
#endif
/// String and similar direct assignment
template <typename T>
struct classify_object<
T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value && WIDE_STRING_CHECK &&
std::is_assignable<T &, std::string>::value>::type> {
static constexpr object_category value{object_category::string_assignable};
};
/// String and similar constructible and copy assignment
template <typename T>
struct classify_object<
T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
!std::is_assignable<T &, std::string>::value && (type_count<T>::value == 1) &&
WIDE_STRING_CHECK && std::is_constructible<T, std::string>::value>::type> {
static constexpr object_category value{object_category::string_constructible};
};
/// Wide strings
template <typename T>
struct classify_object<T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
STRING_CHECK && std::is_assignable<T &, std::wstring>::value>::type> {
static constexpr object_category value{object_category::wstring_assignable};
};
template <typename T>
struct classify_object<
T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
!std::is_assignable<T &, std::wstring>::value && (type_count<T>::value == 1) &&
STRING_CHECK && std::is_constructible<T, std::wstring>::value>::type> {
static constexpr object_category value{object_category::wstring_constructible};
};
/// Enumerations
template <typename T> struct classify_object<T, typename std::enable_if<std::is_enum<T>::value>::type> {
static constexpr object_category value{object_category::enumeration};
};
template <typename T> struct classify_object<T, typename std::enable_if<is_complex<T>::value>::type> {
static constexpr object_category value{object_category::complex_number};
};
/// Handy helper to contain a bunch of checks that rule out many common types (integers, string like, floating point,
/// vectors, and enumerations
template <typename T> struct uncommon_type {
using type = typename std::conditional<
!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
!std::is_assignable<T &, std::string>::value && !std::is_constructible<T, std::string>::value &&
!std::is_assignable<T &, std::wstring>::value && !std::is_constructible<T, std::wstring>::value &&
!is_complex<T>::value && !is_mutable_container<T>::value && !std::is_enum<T>::value,
std::true_type,
std::false_type>::type;
static constexpr bool value = type::value;
};
/// wrapper type
template <typename T>
struct classify_object<T,
typename std::enable_if<(!is_mutable_container<T>::value && is_wrapper<T>::value &&
!is_tuple_like<T>::value && uncommon_type<T>::value)>::type> {
static constexpr object_category value{object_category::wrapper_value};
};
/// Assignable from double or int
template <typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
!is_wrapper<T>::value && is_direct_constructible<T, double>::value &&
is_direct_constructible<T, int>::value>::type> {
static constexpr object_category value{object_category::number_constructible};
};
/// Assignable from int
template <typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
!is_wrapper<T>::value && !is_direct_constructible<T, double>::value &&
is_direct_constructible<T, int>::value>::type> {
static constexpr object_category value{object_category::integer_constructible};
};
/// Assignable from double
template <typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
!is_wrapper<T>::value && is_direct_constructible<T, double>::value &&
!is_direct_constructible<T, int>::value>::type> {
static constexpr object_category value{object_category::double_constructible};
};
/// Tuple type
template <typename T>
struct classify_object<
T,
typename std::enable_if<is_tuple_like<T>::value &&
((type_count<T>::value >= 2 && !is_wrapper<T>::value) ||
(uncommon_type<T>::value && !is_direct_constructible<T, double>::value &&
!is_direct_constructible<T, int>::value) ||
(uncommon_type<T>::value && type_count<T>::value >= 2))>::type> {
static constexpr object_category value{object_category::tuple_value};
// the condition on this class requires it be like a tuple, but on some compilers (like Xcode) tuples can be
// constructed from just the first element so tuples of <string, int,int> can be constructed from a string, which
// could lead to issues so there are two variants of the condition, the first isolates things with a type size >=2
// mainly to get tuples on Xcode with the exception of wrappers, the second is the main one and just separating out
// those cases that are caught by other object classifications
};
/// container type
template <typename T> struct classify_object<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
static constexpr object_category value{object_category::container_value};
};
// Type name print
/// Was going to be based on
/// http://stackoverflow.com/questions/1055452/c-get-name-of-type-in-template
/// But this is cleaner and works better in this case
template <typename T,
enable_if_t<classify_object<T>::value == object_category::char_value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "CHAR";
}
template <typename T,
enable_if_t<classify_object<T>::value == object_category::integral_value ||
classify_object<T>::value == object_category::integer_constructible,
detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "INT";
}
template <typename T,
enable_if_t<classify_object<T>::value == object_category::unsigned_integral, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "UINT";
}
template <typename T,
enable_if_t<classify_object<T>::value == object_category::floating_point ||
classify_object<T>::value == object_category::number_constructible ||
classify_object<T>::value == object_category::double_constructible,
detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "FLOAT";
}
/// Print name for enumeration types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::enumeration, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "ENUM";
}
/// Print name for enumeration types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::boolean_value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "BOOLEAN";
}
/// Print name for enumeration types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::complex_number, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "COMPLEX";
}
/// Print for all other types
template <typename T,
enable_if_t<classify_object<T>::value >= object_category::string_assignable &&
classify_object<T>::value <= object_category::other,
detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "TEXT";
}
/// typename for tuple value
template <typename T,
enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value >= 2,
detail::enabler> = detail::dummy>
std::string type_name(); // forward declaration
/// Generate type name for a wrapper or container value
template <typename T,
enable_if_t<classify_object<T>::value == object_category::container_value ||
classify_object<T>::value == object_category::wrapper_value,
detail::enabler> = detail::dummy>
std::string type_name(); // forward declaration
/// Print name for single element tuple types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value == 1,
detail::enabler> = detail::dummy>
inline std::string type_name() {
return type_name<typename std::decay<typename std::tuple_element<0, T>::type>::type>();
}
/// Empty string if the index > tuple size
template <typename T, std::size_t I>
inline typename std::enable_if<I == type_count_base<T>::value, std::string>::type tuple_name() {
return std::string{};
}
/// Recursively generate the tuple type name
template <typename T, std::size_t I>
inline typename std::enable_if<(I < type_count_base<T>::value), std::string>::type tuple_name() {
auto str = std::string{type_name<typename std::decay<typename std::tuple_element<I, T>::type>::type>()} + ',' +
tuple_name<T, I + 1>();
if(str.back() == ',')
str.pop_back();
return str;
}
/// Print type name for tuples with 2 or more elements
template <typename T,
enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value >= 2,
detail::enabler>>
inline std::string type_name() {
auto tname = std::string(1, '[') + tuple_name<T, 0>();
tname.push_back(']');
return tname;
}
/// get the type name for a type that has a value_type member
template <typename T,
enable_if_t<classify_object<T>::value == object_category::container_value ||
classify_object<T>::value == object_category::wrapper_value,
detail::enabler>>
inline std::string type_name() {
return type_name<typename T::value_type>();
}
// Lexical cast
/// Convert to an unsigned integral
template <typename T, enable_if_t<std::is_unsigned<T>::value, detail::enabler> = detail::dummy>
bool integral_conversion(const std::string &input, T &output) noexcept {
if(input.empty() || input.front() == '-') {
return false;
}
char *val{nullptr};
errno = 0;
std::uint64_t output_ll = std::strtoull(input.c_str(), &val, 0);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
if(val == (input.c_str() + input.size()) && static_cast<std::uint64_t>(output) == output_ll) {
return true;
}
val = nullptr;
std::int64_t output_sll = std::strtoll(input.c_str(), &val, 0);
if(val == (input.c_str() + input.size())) {
output = (output_sll < 0) ? static_cast<T>(0) : static_cast<T>(output_sll);
return (static_cast<std::int64_t>(output) == output_sll);
}
// remove separators
if(input.find_first_of("_'") != std::string::npos) {
std::string nstring = input;
nstring.erase(std::remove(nstring.begin(), nstring.end(), '_'), nstring.end());
nstring.erase(std::remove(nstring.begin(), nstring.end(), '\''), nstring.end());
return integral_conversion(nstring, output);
}
if(std::isspace(static_cast<unsigned char>(input.back()))) {
return integral_conversion(trim_copy(input), output);
}
if(input.compare(0, 2, "0o") == 0 || input.compare(0, 2, "0O") == 0) {
val = nullptr;
errno = 0;
output_ll = std::strtoull(input.c_str() + 2, &val, 8);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
return (val == (input.c_str() + input.size()) && static_cast<std::uint64_t>(output) == output_ll);
}
if(input.compare(0, 2, "0b") == 0 || input.compare(0, 2, "0B") == 0) {
// LCOV_EXCL_START
// In some new compilers including the coverage testing one binary strings are handled properly in strtoull
// automatically so this coverage is missing but is well tested in other compilers
val = nullptr;
errno = 0;
output_ll = std::strtoull(input.c_str() + 2, &val, 2);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
return (val == (input.c_str() + input.size()) && static_cast<std::uint64_t>(output) == output_ll);
// LCOV_EXCL_STOP
}
return false;
}