diff --git a/README.md b/README.md index 2d26873..060d262 100644 --- a/README.md +++ b/README.md @@ -1,362 +1,35 @@ -------------------------------------------------------------------------------- -CIS565: Project 5: WebGL -------------------------------------------------------------------------------- -Fall 2014 -------------------------------------------------------------------------------- -Due Monday 11/03/2014 -------------------------------------------------------------------------------- - -------------------------------------------------------------------------------- -NOTE: -------------------------------------------------------------------------------- -This project requires any graphics card with support for a modern OpenGL -pipeline. Any AMD, NVIDIA, or Intel card from the past few years should work -fine, and every machine in the SIG Lab and Moore 100 is capable of running -this project. - -This project also requires a WebGL capable browser. The project is known to -have issues with Chrome on windows, but Firefox seems to run it fine. - -------------------------------------------------------------------------------- -INTRODUCTION: -------------------------------------------------------------------------------- -In this project, you will get introduced to the world of GLSL in two parts: -vertex shading and fragment shading. The first part of this project is the -Image Processor, and the second part of this project is a Wave Vertex Shader. - -In the first part of this project, you will implement a GLSL vertex shader as -part of a WebGL demo. You will create a dynamic wave animation using code that -runs entirely on the GPU. - -In the second part of this project, you will implement a GLSL fragment shader -to render an interactive globe in WebGL. This will include texture blending, -bump mapping, specular masking, and adding a cloud layer to give your globe a -uniquie feel. - -------------------------------------------------------------------------------- -CONTENTS: -------------------------------------------------------------------------------- -The Project5 root directory contains the following subdirectories: - -* js/ contains the javascript files, including external libraries, necessary. -* assets/ contains the textures that will be used in the second half of the - assignment. -* resources/ contains the screenshots found in this readme file. - -------------------------------------------------------------------------------- -PART 1 REQUIREMENTS: -------------------------------------------------------------------------------- - -In Part 1, you are given code for: - -* Drawing a VBO through WebGL -* Javascript code for interfacing with WebGL -* Functions for generating simplex noise - -You are required to implement the following: - -* A sin-wave based vertex shader: - -![Example sin wave grid](resources/sinWaveGrid.png) - -* One interesting vertex shader of your choice - -------------------------------------------------------------------------------- -PART 1 WALKTHROUGH: -------------------------------------------------------------------------------- -**Sin Wave** - -* For this assignment, you will need the latest version of Firefox. -* Begin by opening index.html. You should see a flat grid of black and white - lines on the xy plane: - -![Example boring grid](resources/emptyGrid.png) - -* In this assignment, you will animate the grid in a wave-like pattern using a - vertex shader, and determine each vertex’s color based on its height, as seen - in the example in the requirements. -* The vertex and fragment shader are located in script tags in `index.html`. -* The JavaScript code that needs to be modified is located in `index.js`. -* Required shader code modifications: - * Add a float uniform named u_time. - * Modify the vertex’s height using the following code: - - ```glsl - float s_contrib = sin(position.x*2.0*3.14159 + u_time); - float t_contrib = cos(position.y*2.0*3.14159 + u_time); - float height = s_contrib*t_contrib; - ``` - - * Use the GLSL mix function to blend together two colors of your choice based - on the vertex’s height. The lowest possible height should be assigned one - color (for example, `vec3(1.0, 0.2, 0.0)`) and the maximum height should be - another (`vec3(0.0, 0.8, 1.0)`). Use a varying variable to pass the color to - the fragment shader, where you will assign it `gl_FragColor`. - - * Using dat.gui, you will add color pickers to modify the max and min colors - via GUI. You will do this by adding the proper uniforms to the fragment - shader, and using the addColor function from dat.GUI. - -* Required JavaScript code modifications: - * A floating-point time value should be increased every animation step. - Hint: the delta should be less than one. - * To pass the time to the vertex shader as a uniform, first query the location - of `u_time` using `context.getUniformLocation` in `initializeShader()`. - Then, the uniform’s value can be set by calling `context.uniform1f` in - `animate()`. - -**Wave Of Your Choice** - -* Create another copy of `index.html`. Call it `index_custom.html`, or - something similar. -* Implement your own interesting vertex shader! In your README.md with your - submission, describe your custom vertex shader, what it does, and how it - works. - -------------------------------------------------------------------------------- -PART 2 REQUIREMENTS: -------------------------------------------------------------------------------- -In Part 2, you are given code for: - -* Reading and loading textures -* Rendering a sphere with textures mapped on -* Basic passthrough fragment and vertex shaders -* A basic globe with Earth terrain color mapping -* Gamma correcting textures -* javascript to interact with the mouse - * left-click and drag moves the camera around - * right-click and drag moves the camera in and out - -You are required to implement: - -* Bump mapped terrain -* Rim lighting to simulate atmosphere -* Night-time lights on the dark side of the globe -* Specular mapping -* Moving clouds - -You are also required to pick one open-ended effect to implement: - -* Procedural water rendering and animation using noise -* Shade based on altitude using the height map -* Cloud shadows via ray-tracing through the cloud map in the fragment shader -* Orbiting Moon with texture mapping and shadow casting onto Earth -* Draw a skybox around the entire scene for the stars. -* Your choice! Email Liam and Patrick to get approval first - -Finally in addition to your readme, you must also set up a gh-pages branch -(explained below) to expose your beautiful WebGL globe to the world. - -Some examples of what your completed globe renderer will look like: - -![Completed globe, day side](resources/globe_day.png) - -Figure 0. Completed globe renderer, daylight side. - -![Completed globe, twilight](resources/globe_twilight.png) - -Figure 1. Completed globe renderer, twilight border. - -![Completed globe, night side](resources/globe_night.png) - -Figure 2. Completed globe renderer, night side. - -------------------------------------------------------------------------------- -PART 2 WALKTHROUGH: -------------------------------------------------------------------------------- - -Open part2/frag_globe.html in Firefox to run it. You’ll see a globe -with Phong lighting like the one in Figure 3. All changes you need to make -will be in the fragment shader portion of this file. - -![Initial globe](resources/globe_initial.png) - -Figure 3. Initial globe with diffuse and specular lighting. - -**Night Lights** - -The backside of the globe not facing the sun is completely black in the -initial globe. Use the `diffuse` lighting component to detect if a fragment -is on this side of the globe, and, if so, shade it with the color from the -night light texture, `u_Night`. Do not abruptly switch from day to night; -instead use the `GLSL mix` function to smoothly transition from day to night -over a reasonable period. The resulting globe will look like Figure 4. -Consider brightening the night lights by multiplying the value by two. - -The base code shows an example of how to gamma correct the nighttime texture: - -```glsl -float gammaCorrect = 1/1.2; -vec4 nightColor = pow(texture2D(u_Night, v_Texcoord), vec4(gammaCorrect)); -``` - -Feel free to play with gamma correcting the night and day textures if you -wish. Find values that you think look nice! - -![Day/Night without specular mapping](resources/globe_nospecmap.png) - -Figure 4. Globe with night lights and day/night blending at dusk/dawn. - -**Specular Map** - -Our day/night color still shows specular highlights on landmasses, which -should only be diffuse lit. Only the ocean should receive specular highlights. -Use `u_EarthSpec` to determine if a fragment is on ocean or land, and only -include the specular component if it is in ocean. - -![Day/Night with specular mapping](resources/globe_specmap.png) - -Figure 5. Globe with specular map. Compare to Figure 4. Here, the specular -component is not used when shading the land. - -**Clouds** - -In day time, clouds should be diffuse lit. Use `u_Cloud` to determine the -cloud color, and `u_CloudTrans` and `mix` to determine how much a daytime -fragment is affected by the day diffuse map or cloud color. See Figure 6. - -In night time, clouds should obscure city lights. Use `u_CloudTrans` and `mix` -to blend between the city lights and solid black. See Figure 7. - -Animate the clouds by offseting the `s` component of `v_Texcoord` by `u_time` -when reading `u_Cloud` and `u_CloudTrans`. - -![Day with clouds](resources/globe_daycloud.png) - -Figure 6. Clouds with day time shading. - -![Night with clouds](resources/globe_nightcloud.png) - -Figure 7. Clouds observing city nights on the dark side of the globe. - -**Bump Mapping** - -Add the appearance of mountains by perturbing the normal used for diffuse -lighting the ground (not the clouds) by using the bump map texture, `u_Bump`. -This texture is 1024x512, and is zero when the fragment is at sea-level, and -one when the fragment is on the highest mountain. Read three texels from this -texture: once using `v_Texcoord`; once one texel to the right; and once one -texel above. Create a perturbed normal in tangent space: - -`normalize(vec3(center - right, center - top, 0.2))` - -Use `eastNorthUpToEyeCoordinates` to transform this normal to eye coordinates, -normalize it, then use it for diffuse lighting the ground instead of the -original normal. - -![Globe with bump mapping](resources/globe_bumpmap.png) - -Figure 8. Bump mapping brings attention to mountains. - -**Rim Lighting** - -Rim lighting is a simple post-processed lighting effect we can apply to make -the globe look as if it has an atmospheric layer catching light from the sun. -Implementing rim lighting is simple; we being by finding the dot product of -`v_Normal` and `v_Position`, and add 1 to the dot product. We call this value -our rim factor. If the rim factor is greater than 0, then we add a blue color -based on the rim factor to the current fragment color. You might use a color -something like `vec4(rim/4, rim/2, rim/2, 1)`. If our rim factor is not greater -than 0, then we leave the fragment color as is. Figures 0,1 and 2 show our -finished globe with rim lighting. - -For more information on rim lighting, -read http://www.fundza.com/rman_shaders/surface/rim_effects/index.html. - -------------------------------------------------------------------------------- -GH-PAGES -------------------------------------------------------------------------------- -Since this assignment is in WebGL you will make your project easily viewable by -taking advantage of GitHub's project pages feature. - -Once you are done you will need to create a new branch named gh-pages: - -`git branch gh-pages` - -Switch to your new branch: - -`git checkout gh-pages` - -Create an index.html file that is either your renamed frag_globe.html or -contains a link to it, commit, and then push as usual. Now you can go to +WebGL exercises +============ +Vertex Shaders +--- +My version of the shader displaces in concentric circles around the center of the plane. -`.github.io/` +![1] +![2] -to see your beautiful globe from anywhere. +Globe +-------- -------------------------------------------------------------------------------- -README -------------------------------------------------------------------------------- -All students must replace or augment the contents of this Readme.md in a clear -manner with the following: +-Bump mapped terrain -* A brief description of the project and the specific features you implemented. -* At least one screenshot of your project running. -* A 30 second or longer video of your project running. To create the video you - can use http://www.microsoft.com/expression/products/Encoder4_Overview.aspx -* A performance evaluation (described in detail below). +-Rim lighting to simulate atmosphere -------------------------------------------------------------------------------- -PERFORMANCE EVALUATION -------------------------------------------------------------------------------- -The performance evaluation is where you will investigate how to make your -program more efficient using the skills you've learned in class. You must have -performed at least one experiment on your code to investigate the positive or -negative effects on performance. +-Night-time lights on the dark side of the globe -We encourage you to get creative with your tweaks. Consider places in your code -that could be considered bottlenecks and try to improve them. +-Specular mapping -Each student should provide no more than a one page summary of their -optimizations along with tables and or graphs to visually explain any -performance differences. +-Moving clouds -In this homework, we do not expect crazy performance evaluation in terms of -optimizations. However, it would be good to take performance benchmarks at -every step in this assignment to see how complicated fragment shaders affect the -overall speed. You can do this by using stats.js. +-Animated water -------------------------------------------------------------------------------- -THIRD PARTY CODE POLICY -------------------------------------------------------------------------------- -* Use of any third-party code must be approved by asking on the Google groups. - If it is approved, all students are welcome to use it. Generally, we approve - use of third-party code that is not a core part of the project. For example, - for the ray tracer, we would approve using a third-party library for loading - models, but would not approve copying and pasting a CUDA function for doing - refraction. -* Third-party code must be credited in README.md. -* Using third-party code without its approval, including using another - student's code, is an academic integrity violation, and will result in you - receiving an F for the semester. +Performance wise, the globe ran at 60 FPS throughout the development process, so I'm not sure what to discuss. -------------------------------------------------------------------------------- -SELF-GRADING -------------------------------------------------------------------------------- -* On the submission date, email your grade, on a scale of 0 to 100, to Harmony, - harmoli+cis565@seas.upenn.com, with a one paragraph explanation. Be concise and - realistic. Recall that we reserve 30 points as a sanity check to adjust your - grade. Your actual grade will be (0.7 * your grade) + (0.3 * our grade). We - hope to only use this in extreme cases when your grade does not realistically - reflect your work - it is either too high or too low. In most cases, we plan - to give you the exact grade you suggest. -* Projects are not weighted evenly, e.g., Project 0 doesn't count as much as - the path tracer. We will determine the weighting at the end of the semester - based on the size of each project. +![day] +![night] ---- -SUBMISSION ---- -As with the previous project, you should fork this project and work inside of -your fork. Upon completion, commit your finished project back to your fork, and -make a pull request to the master repository. You should include a README.md -file in the root directory detailing the following +Video: http://youtu.be/2aae9YiuFxU -* A brief description of the project and specific features you implemented -* At least one screenshot of your project running. -* A link to a video of your project running. -* Instructions for building and running your project if they differ from the - base code. -* A performance writeup as detailed above. -* A list of all third-party code used. -* This Readme file edited as described above in the README section. +[day]:https://raw.githubusercontent.com/jeremynewlin/Project5-WebGL/master/day.png +[night]:https://raw.githubusercontent.com/jeremynewlin/Project5-WebGL/master/night.png +[1]:https://raw.githubusercontent.com/jeremynewlin/Project5-WebGL/master/wave1.png +[2]:https://raw.githubusercontent.com/jeremynewlin/Project5-WebGL/master/wave2.png \ No newline at end of file diff --git a/center_wave.html b/center_wave.html new file mode 100644 index 0000000..ce60e8a --- /dev/null +++ b/center_wave.html @@ -0,0 +1,283 @@ + + + +Vertex Wave + + + + + +
+ + + + + + + + + + + + + + diff --git a/day.png b/day.png new file mode 100644 index 0000000..28b3bf7 Binary files /dev/null and b/day.png differ diff --git a/frag_globe.html b/frag_globe.html index e074492..09e7258 100644 --- a/frag_globe.html +++ b/frag_globe.html @@ -60,6 +60,9 @@ uniform sampler2D u_EarthSpec; //Bump map uniform sampler2D u_Bump; + + //Height + uniform sampler2D u_Height; uniform float u_time; uniform mat4 u_InvTrans; @@ -71,27 +74,68 @@ mat3 eastNorthUpToEyeCoordinates(vec3 positionMC, vec3 normalEC); + float snoise(vec2 v); + void main(void) { // surface normal - normalized after rasterization - vec3 normal = normalize(v_Normal); + + float bumpTexWidth = 1.0/1024.0; + float bumpTexHeight = 1.0/512.0; + + float center = texture2D(u_Bump, v_Texcoord).r; + float top = texture2D(u_Bump, vec2(v_Texcoord.s, v_Texcoord.t+bumpTexWidth)).r; + float right = texture2D(u_Bump, vec2(v_Texcoord.s, v_Texcoord.t)).r; + + vec3 normalFromTex = normalize(vec3(center - right, center - top, 0.2)); + + vec3 normal = normalize(v_Normal); + normal = normalize(eastNorthUpToEyeCoordinates(v_positionMC, v_Normal) * normalFromTex); // normalized eye-to-position vector in camera coordinates vec3 eyeToPosition = normalize(v_Position); float diffuse = clamp(dot(u_CameraSpaceDirLight, normal), 0.0, 1.0); vec3 toReflectedLight = reflect(-u_CameraSpaceDirLight, normal); + float specularContribution = texture2D(u_EarthSpec, v_Texcoord).r; float specular = max(dot(toReflectedLight, -eyeToPosition), 0.0); - specular = pow(specular, 20.0); + specular = pow(specular, 20.0) * specularContribution; float gammaCorrect = 1.0/1.2; //gamma correct by 1/1.2 vec3 dayColor = texture2D(u_DayDiffuse, v_Texcoord).rgb; + + if (specularContribution > 0.5){ + float noise = snoise(500.0 * v_Texcoord + u_time) + 1.5; + float noise2 = snoise(350.0 * v_Texcoord - u_time) + 1.5; + dayColor *= noise*noise2; + } + + vec2 cloudOffset = v_Texcoord; + cloudOffset.s += 0.1*u_time; + vec3 cloudColor = texture2D(u_Cloud, cloudOffset).rgb; + float cloudAmount = texture2D(u_CloudTrans, cloudOffset).r; + + dayColor = mix(cloudColor, dayColor, cloudAmount); + vec3 nightColor = texture2D(u_Night, v_Texcoord).rgb; //apply gamma correction to nighttime texture - nightColor = pow(nightColor,vec3(gammaCorrect)); - + nightColor = pow(2.0*nightColor,vec3(gammaCorrect)); + nightColor = mix(vec3(0,0,0), nightColor, cloudAmount); + vec3 color = ((0.6 * diffuse) + (0.4 * specular)) * dayColor; + + float normalDotLight = dot(u_CameraSpaceDirLight, normal); + if (normalDotLight < 0.00001){ + color = mix(color, nightColor, abs(normalDotLight)); + } + + float rimAmount = dot(v_Normal, v_Position) + 1.0; + rimAmount = clamp(rimAmount, 0.0,1.0); + vec3 rimColor = vec3(rimAmount/4.0, rimAmount/2.0, rimAmount/2.0); + + if (rimAmount > 0.0) color += rimColor; + gl_FragColor = vec4(color, 1.0); } @@ -109,6 +153,78 @@ bitangentEC.x, bitangentEC.y, bitangentEC.z, normalEC.x, normalEC.y, normalEC.z); } + + // + // Description : Array and textureless GLSL 2D simplex noise function. + // Author : Ian McEwan, Ashima Arts. + // Maintainer : ijm + // Lastmod : 20110822 (ijm) + // License : Copyright (C) 2011 Ashima Arts. All rights reserved. + // Distributed under the MIT License. See LICENSE file. + // https://github.com/ashima/webgl-noise + // + + vec3 mod289(vec3 x) { + return x - floor(x * (1.0 / 289.0)) * 289.0; + } + + vec2 mod289(vec2 x) { + return x - floor(x * (1.0 / 289.0)) * 289.0; + } + + vec3 permute(vec3 x) { + return mod289(((x*34.0)+1.0)*x); + } + + float snoise(vec2 v) + { + const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 + 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) + -0.577350269189626, // -1.0 + 2.0 * C.x + 0.024390243902439); // 1.0 / 41.0 + // First corner + vec2 i = floor(v + dot(v, C.yy) ); + vec2 x0 = v - i + dot(i, C.xx); + + // Other corners + vec2 i1; + //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 + //i1.y = 1.0 - i1.x; + i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); + // x0 = x0 - 0.0 + 0.0 * C.xx ; + // x1 = x0 - i1 + 1.0 * C.xx ; + // x2 = x0 - 1.0 + 2.0 * C.xx ; + vec4 x12 = x0.xyxy + C.xxzz; + x12.xy -= i1; + + // Permutations + i = mod289(i); // Avoid truncation effects in permutation + vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 )) + + i.x + vec3(0.0, i1.x, 1.0 )); + + vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0); + m = m*m ; + m = m*m ; + + // Gradients: 41 points uniformly over a line, mapped onto a diamond. + // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) + + vec3 x = 2.0 * fract(p * C.www) - 1.0; + vec3 h = abs(x) - 0.5; + vec3 ox = floor(x + 0.5); + vec3 a0 = x - ox; + + // Normalise gradients implicitly by scaling m + // Approximation of: m *= inversesqrt( a0*a0 + h*h ); + m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h ); + + // Compute final noise value at P + vec3 g; + g.x = a0.x * x0.x + h.x * x0.y; + g.yz = a0.yz * x12.xz + h.yz * x12.yw; + return 130.0 * dot(m, g); + } + diff --git a/index.html b/index.html new file mode 100644 index 0000000..09e7258 --- /dev/null +++ b/index.html @@ -0,0 +1,235 @@ + + + +Fragment Globe + + + + + +
+ + + + + + + + + + + + diff --git a/js/frag_globe.js b/js/frag_globe.js index f37830d..3a12bb9 100644 --- a/js/frag_globe.js +++ b/js/frag_globe.js @@ -267,6 +267,8 @@ gl.uniformMatrix4fv(u_InvTransLocation, false, invTrans); gl.uniform3fv(u_CameraSpaceDirLightLocation, lightdir); + + gl.uniform1f(u_timeLocation, time); gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, dayTex); diff --git a/night.png b/night.png new file mode 100644 index 0000000..eacd792 Binary files /dev/null and b/night.png differ diff --git a/vert_wave.html b/vert_wave.html index 5c7495b..bce91fc 100644 --- a/vert_wave.html +++ b/vert_wave.html @@ -17,14 +17,24 @@ attribute vec2 position; uniform mat4 u_modelViewPerspective; - + uniform float u_time; + + uniform vec4 u_highCol; + uniform vec4 u_lowCol; + + varying vec4 fragColor; + void main(void) { // NOTE : according to the WebGL standard, 0.0f is not accepted - float height = 0.0; + + float s_contrib = sin(position.x*2.0*3.14159 + u_time); + float t_contrib = cos(position.y*2.0*3.14159 + u_time); + float height = s_contrib*t_contrib; // NOTE : gl_Position is always a vec4 - gl_Position = u_modelViewPerspective * vec4(vec3(position, height), 1.0); + gl_Position = u_modelViewPerspective * vec4(vec3(position, height), 1.0); + fragColor = mix(u_lowCol,u_highCol, height); } @@ -32,11 +42,13 @@ precision mediump float; uniform vec4 u_color; + + varying vec4 fragColor; void main(void) { // NOTE : gl_FragColor is always a vec4 - gl_FragColor = u_color; + gl_FragColor = fragColor; } @@ -45,7 +57,13 @@ var positionLocation = 0; var heightLocation = 1; var u_modelViewPerspectiveLocation; + var u_heightLocation; var u_color; + var u_highColLocation; + var u_lowColLocation; + + var frame = 0.0; + var dt = 0.1; var heights; var numberOfIndices; @@ -54,6 +72,8 @@ var center = [0.0, 0.0, 0.0]; var up = [0.0, 0.0, 1.0]; + var highCol = [1.0,1.0,0.0,1.0]; + var lowCol = [1.0,0.0,1.0,1.0]; var NUM_WIDTH_PTS = 32; var NUM_HEIGHT_PTS = 32; @@ -64,17 +84,51 @@ var persp = mat4.create(); var view = mat4.create(); + + //color gui + var colorControl; + var ColorPair = function(){ + this.highCol = [0,1,1,1]; + this.lowCol = [1,0,1,1]; + }; + // Function called when the window is loaded window.onload = function() { + + colorControl = new ColorPair(); + // Add GUI component var gui = new dat.GUI(); - + + gui.addColor(colorControl, 'highCol').onChange(function() + { + highCol[0] = colorControl.highCol[0]/255.0; + highCol[1] = colorControl.highCol[1]/255.0; + highCol[2] = colorControl.highCol[2]/255.0; + highCol[3] = colorControl.highCol[3]/255.0; + }); + + gui.addColor(colorControl, 'lowCol').onChange(function() + { + lowCol[0] = colorControl.lowCol[0]/255.0; + lowCol[1] = colorControl.lowCol[1]/255.0; + lowCol[2] = colorControl.lowCol[2]/255.0; + lowCol[3] = colorControl.lowCol[3]/255.0; + }); + + init(); animate(); }; + function log(msg) { + setTimeout(function() { + throw new Error(msg); + }, 0); + } + function init() { message = document.getElementById("message"); canvas = document.getElementById("canvas"); @@ -92,7 +146,7 @@ mat4.perspective(45.0, 0.5, 0.1, 100.0, persp); mat4.lookAt(eye, center, up, view); - + initializeShader(); initializeGrid(); } @@ -100,6 +154,7 @@ function animate(){ // Update + frame += dt; var model = mat4.create(); mat4.identity(model); mat4.translate(model, [-0.5, -0.5, 0.0]); @@ -112,8 +167,12 @@ context.clear(context.COLOR_BUFFER_BIT | context.DEPTH_BUFFER_BIT); context.uniformMatrix4fv(u_modelViewPerspectiveLocation, false, mvp); + context.uniform1f(u_heightLocation, frame); context.drawElements(context.LINES, numberOfIndices, context.UNSIGNED_SHORT,0); + context.uniform4fv(u_highColLocation, highCol); + context.uniform4fv(u_lowColLocation, lowCol); + window.requestAnimFrame(animate); } @@ -125,7 +184,11 @@ var program = createProgram(context, vs, fs, message); context.bindAttribLocation(program, positionLocation, "position"); u_modelViewPerspectiveLocation = context.getUniformLocation(program,"u_modelViewPerspective"); - u_colorLocation = context.getUniformLocation(program, "u_color"); + u_heightLocation = context.getUniformLocation(program,"u_time"); + + u_colorLocation = context.getUniformLocation(program, "u_color"); + u_highColLocation = context.getUniformLocation(program, "u_highCol"); + u_lowColLocation = context.getUniformLocation(program, "u_lowCol"); context.useProgram(program); } diff --git a/wave1.png b/wave1.png new file mode 100644 index 0000000..f41f2bb Binary files /dev/null and b/wave1.png differ diff --git a/wave2.png b/wave2.png new file mode 100644 index 0000000..43ad976 Binary files /dev/null and b/wave2.png differ