-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbulk_upload.py
471 lines (392 loc) · 17 KB
/
bulk_upload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import datetime
from typing import List
import time
import json
import gcsfs
import numpy as np
import pandas as pd
from celery import chain, group, chord
from celery.utils.log import get_task_logger
from dynamicannotationdb.models import AnnoMetadata, SegmentationMetadata
from dynamicannotationdb.schema import DynamicSchemaClient
from materializationengine.celery_init import celery
from materializationengine.database import sqlalchemy_cache
from materializationengine.index_manager import index_cache
from materializationengine.shared_tasks import fin, add_index
from materializationengine.utils import (
create_annotation_model,
create_segmentation_model,
)
celery_logger = get_task_logger(__name__)
@celery.task(name="workflow:gcs_bulk_upload_workflow", bind=True, acks_late=True)
def gcs_bulk_upload_workflow(self, bulk_upload_params: dict):
"""Bulk insert of npy file from a google cloud storage
bucket.
Args:
bulk_upload_params (dict): column mapping info and
metadata for uploading data.
"""
upload_creation_time = datetime.datetime.utcnow()
bulk_upload_info = get_gcs_file_info(upload_creation_time, bulk_upload_params)
bulk_upload_chunks = create_chunks(bulk_upload_info[0])
bulk_upload_workflow = chain(
create_tables.si(bulk_upload_info[0]),
chord(
[
group(bulk_upload_task.si(bulk_upload_info, chunk))
for chunk in bulk_upload_chunks
],
fin.si(),
), # return here is required for chords
add_table_indices.si(bulk_upload_info[0]),
find_missing_chunks_by_ids.s(bulk_upload_info),
)
bulk_upload_workflow.apply_async()
@celery.task(name="workflow:gcs_insert_missing_data_workflow", bind=True, acks_late=True)
def gcs_insert_missing_data(self, bulk_upload_params: dict):
bulk_upload_chunks = bulk_upload_params["chunks"]
upload_creation_time = datetime.datetime.utcnow()
bulk_upload_info = get_gcs_file_info(upload_creation_time, bulk_upload_params)
bulk_upload_workflow = group(
bulk_upload_task.si(bulk_upload_info, chunk) for chunk in bulk_upload_chunks
)
bulk_upload_workflow.apply_async()
def get_gcs_file_info(
upload_creation_time: datetime.datetime.utcnow, bulk_upload_params: dict
) -> dict:
project_path = bulk_upload_params["project"]
file_path = bulk_upload_params["file_path"]
column_mapping = bulk_upload_params["column_mapping"]
annotation_table_name = bulk_upload_params["annotation_table_name"]
segmentation_source = bulk_upload_params["segmentation_source"]
# convert unix epoch time to datetime object
materialized_ts = bulk_upload_params.get("materialized_ts", None)
if materialized_ts:
last_updated_ts = datetime.datetime.utcfromtimestamp(materialized_ts).strftime(
"%Y-%m-%dT%H:%M:%S.%f"
)
else:
last_updated_ts = None
fs = gcsfs.GCSFileSystem(project=project_path)
files = fs.ls(f"{project_path}/{file_path}")
bulk_upload_info = []
try:
for file in files:
if file.endswith(".npy"):
mapped_file_name = file.split("/")[-1].split(".")[0]
if mapped_file_name in column_mapping:
with fs.open(file, "rb") as fhandle:
major, minor = np.lib.format.read_magic(fhandle)
shape, fortran, dtype = np.lib.format.read_array_header_1_0(
fhandle
)
file_info = {
"filename": file,
"project": bulk_upload_params["project"],
"file_path": bulk_upload_params["file_path"],
"schema": bulk_upload_params["schema"],
"description": bulk_upload_params["description"],
"annotation_table_name": annotation_table_name,
"seg_table_name": f"{annotation_table_name}__{segmentation_source}",
"aligned_volume": bulk_upload_params["aligned_volume"][
"name"
],
"pcg_table_name": segmentation_source,
"upload_creation_time": upload_creation_time,
"num_rows": int(shape[0]),
"data_type": mapped_file_name,
"fortran": fortran,
"column_mapping": column_mapping,
"last_updated": last_updated_ts,
}
bulk_upload_info.append(file_info.copy())
except Exception as e:
raise e
return bulk_upload_info
def create_chunks(bulk_upload_info: dict) -> List:
num_rows = bulk_upload_info["num_rows"]
chunk_size = bulk_upload_info.get("chunk_size", 100_000)
chunks = []
if chunk_size <= 1:
raise ValueError(f"Chunk size of {chunk_size}, must be larger than 1.")
for chunk_start in range(0, num_rows, chunk_size):
chunk_end = chunk_start + chunk_size
if chunk_end > num_rows:
chunk_end = num_rows
chunks.append([chunk_start, chunk_end - chunk_start])
return chunks
@celery.task(name="workflow:create_tables", acks_late=True, bind=True)
def create_tables(self, bulk_upload_params: dict):
table_name = bulk_upload_params["annotation_table_name"]
aligned_volume = bulk_upload_params["aligned_volume"]
pcg_table_name = bulk_upload_params["pcg_table_name"]
last_updated = bulk_upload_params["last_updated"]
seg_table_name = bulk_upload_params["seg_table_name"]
upload_creation_time = bulk_upload_params["upload_creation_time"]
session = sqlalchemy_cache.get(aligned_volume)
engine = sqlalchemy_cache.get_engine(aligned_volume)
if (
not session.query(AnnoMetadata)
.filter(AnnoMetadata.table_name == table_name)
.scalar()
):
AnnotationModel = create_annotation_model(bulk_upload_params)
AnnotationModel.__table__.create(bind=engine, checkfirst=True)
anno_metadata_dict = {
"table_name": table_name,
"schema_type": bulk_upload_params.get("schema"),
"valid": True,
"created": upload_creation_time,
"user_id": bulk_upload_params.get("user_id", "[email protected]"),
"description": bulk_upload_params["description"],
"reference_table": bulk_upload_params.get("reference_table"),
"flat_segmentation_source": bulk_upload_params.get(
"flat_segmentation_source"
),
}
anno_metadata = AnnoMetadata(**anno_metadata_dict)
session.add(anno_metadata)
if (
not session.query(SegmentationMetadata)
.filter(SegmentationMetadata.table_name == table_name)
.scalar()
):
SegmentationModel = create_segmentation_model(bulk_upload_params)
SegmentationModel.__table__.create(bind=engine, checkfirst=True)
seg_metadata_dict = {
"annotation_table": table_name,
"schema_type": bulk_upload_params.get("schema"),
"table_name": seg_table_name,
"valid": True,
"created": upload_creation_time,
"pcg_table_name": pcg_table_name,
"last_updated": last_updated,
}
seg_metadata = SegmentationMetadata(**seg_metadata_dict)
try:
session.flush()
session.add(seg_metadata)
session.commit()
except Exception as e:
celery_logger.error(f"SQL ERROR: {e}")
session.rollback()
raise e
finally:
drop_seg_indexes = index_cache.drop_table_indices(
SegmentationModel.__table__.name, engine
)
# wait for indexes to drop
time.sleep(10)
drop_anno_indexes = index_cache.drop_table_indices(
AnnotationModel.__table__.name, engine
)
celery_logger.info(
f"Table {AnnotationModel.__table__.name} indices have been dropped {drop_anno_indexes}."
)
celery_logger.info(
f"Table {SegmentationModel.__table__.name} indices have been dropped {drop_seg_indexes}."
)
session.close()
return f"Tables {table_name}, {seg_table_name} created."
@celery.task(name="workflow:bulk_upload_task", bind=True, acks_late=True, max_retries=3)
def bulk_upload_task(self, bulk_upload_info: dict, chunk: List):
try:
file_data = []
for file_metadata in bulk_upload_info:
celery_logger.info(file_metadata)
data = gcs_read_npy_chunk(file_metadata, chunk)
parsed_data = parse_data(data, file_metadata)
file_data.append(parsed_data)
formatted_data = format_data(file_data, file_metadata)
return self.replace(upload_data.s(formatted_data, file_metadata))
except Exception as e:
celery_logger.error(e)
raise self.retry(exc=Exception, countdown=3)
def gcs_read_npy_chunk(bulk_upload_info: dict, chunk: List):
filename = bulk_upload_info["filename"]
project = bulk_upload_info["project"]
start_row = chunk[0]
num_rows = chunk[1]
if start_row < 0 or num_rows <= 0:
raise ValueError()
fs = gcsfs.GCSFileSystem(project=project)
with fs.open(filename, "rb") as fhandle:
major, minor = np.lib.format.read_magic(fhandle)
shape, fortran, dtype = np.lib.format.read_array_header_1_0(fhandle)
offset = fhandle.tell()
try:
col_shape = shape[1]
except IndexError:
col_shape = 1
if start_row > shape[0]:
raise ValueError()
if start_row + num_rows > shape[0]:
raise ValueError()
total_size = np.prod(shape[:])
row_size = int(np.prod(shape[1:]))
length = num_rows * dtype.itemsize
start_byte = start_row * dtype.itemsize
index_row_byte = (total_size // row_size) * dtype.itemsize
if fortran:
data_bytes = [
(start_byte + (index_row_byte * i)) for i in range(0, col_shape)
]
else:
fhandle.seek(start_byte)
data_bytes = [start_byte]
array = np.zeros([num_rows, row_size], dtype=dtype)
for i, index in enumerate(data_bytes):
data = fs.read_block(filename, offset=index + offset, length=length)
if col_shape == 1:
array = np.frombuffer(data, dtype=dtype)
else:
array[:, i] = np.frombuffer(data, dtype=dtype)
return array.tolist()
def parse_data(data: List, bulk_upload_info: dict):
data_type = bulk_upload_info["data_type"]
column_mapping = bulk_upload_info["column_mapping"]
celery_logger.info(f"data_type: {data_type} | column_mapping:{column_mapping} ")
data_columns = column_mapping[data_type]
if not isinstance(data_columns, list):
data = {data_columns: data}
formatted_data = pd.DataFrame(data)
else:
formatted_data = pd.DataFrame(data, columns=data_columns)
return formatted_data.to_dict("records")
def format_data(data: List, bulk_upload_info: dict):
schema = bulk_upload_info["schema"]
upload_creation_time = bulk_upload_info["upload_creation_time"]
base_df = pd.DataFrame(data[0])
for data in data[1:]:
temp_df = pd.DataFrame(data)
base_df = pd.concat([base_df, temp_df], axis=1)
records = base_df.to_dict("records")
schema_client = DynamicSchemaClient()
schema = schema_client.get_schema(schema)
FlattendSchema = schema_client.get_flattened_schema(schema)
(
flat_annotation_schema,
flat_segmentation_schema,
) = schema_client._split_flattened_schema(FlattendSchema)
anno_data = split_annotation_data(
records, flat_annotation_schema, upload_creation_time
)
seg_data = split_annotation_data(
records, flat_segmentation_schema, upload_creation_time
)
return [anno_data, seg_data]
def split_annotation_data(serialized_data, schema, upload_creation_time):
split_data = []
for data in serialized_data:
matched_data = {}
for key, value in schema._declared_fields.items():
if key in data:
if "position" in key:
matched_data[
key
] = f"POINTZ({data[key][0]} {data[key][1]} {data[key][2]})"
matched_data.update(
{"valid": True, "created": str(upload_creation_time)}
)
else:
matched_data[key] = data[key]
matched_data.update(
{
"id": data["id"],
}
)
split_data.append(matched_data)
return split_data
@celery.task(name="workflow:add_table_indices", acks_late=True, max_retries=3, bind=True)
def upload_data(self, data: List, bulk_upload_info: dict):
aligned_volume = bulk_upload_info["aligned_volume"]
model_data = {
"annotation_table_name": bulk_upload_info["annotation_table_name"],
"schema": bulk_upload_info["schema"],
"pcg_table_name": bulk_upload_info["pcg_table_name"],
}
AnnotationModel = create_annotation_model(model_data)
SegmentationModel = create_segmentation_model(model_data)
session = sqlalchemy_cache.get(aligned_volume)
engine = sqlalchemy_cache.get_engine(aligned_volume)
try:
with engine.begin() as connection:
connection.execute(AnnotationModel.__table__.insert(), data[0])
connection.execute(SegmentationModel.__table__.insert(), data[1])
except Exception as e:
celery_logger.error(f"ERROR: {e}")
raise self.retry(exc=Exception, countdown=3)
finally:
session.close()
engine.dispose()
return True
@celery.task(name="workflow:add_table_indices", bind=True, acks_late=True)
def add_table_indices(self, bulk_upload_info: dict):
aligned_volume = bulk_upload_info["aligned_volume"]
annotation_table_name = bulk_upload_info["annotation_table_name"]
seg_table_name = bulk_upload_info["seg_table_name"]
segmentation_source = bulk_upload_info["pcg_table_name"]
schema = bulk_upload_info["schema"]
engine = sqlalchemy_cache.get_engine(aligned_volume)
schema_client = DynamicSchemaClient()
anno_model = schema_client.create_annotation_model(annotation_table_name, schema)
seg_model = schema_client.create_segmentation_model(
annotation_table_name, schema, segmentation_source
)
# add annotation indexes
anno_indices = index_cache.add_indices_sql_commands(
table_name=annotation_table_name, model=anno_model, engine=engine
)
# add segmentation table indexes
seg_indices = index_cache.add_indices_sql_commands(
table_name=seg_table_name, model=seg_model, engine=engine
)
add_index_tasks = []
add_anno_table_index_tasks = [
add_index.si(aligned_volume, command) for command in anno_indices
]
add_index_tasks.append(add_anno_table_index_tasks)
add_seg_table_index_tasks = [
add_index.si(aligned_volume, command) for command in seg_indices
]
add_index_tasks.append(add_seg_table_index_tasks)
return self.replace(chain(add_index_tasks))
@celery.task(name="workflow:find_missing_chunks_by_ids", bind=True, acks_late=True)
def find_missing_chunks_by_ids(self, bulk_upload_info: dict, chunk_size: int = 100_000):
"""Find missing chunks that failed to insert during bulk uploading.
It will compare the .npy files in the bucket to the database. If
missing chunks of data are found this method will return a celery
workflow to attempt to re-insert the data.
Args:
bulk_upload_info (dict): bulk upload metadata
chunk_size (int, optional): size of chunk to query. Defaults to 100_000.
Returns:
celery workflow or message
"""
filename = bulk_upload_info["filename"]
file_path = bulk_upload_info["file_path"]
table_name = bulk_upload_info["annotation_table_name"]
project = bulk_upload_info["project"]
aligned_volume = bulk_upload_info["aligned_volume"]
engine = sqlalchemy_cache.get_engine(aligned_volume)
fs = gcsfs.GCSFileSystem(project=project)
with fs.open(filename, "rb") as fhandle:
ids = np.load(file_path)
start_ids = ids[::chunk_size]
valstr = ",".join([str(s) for s in start_ids])
found_ids = pd.read_sql(
f"select id from {table_name} where id in ({valstr})", engine
)
chunk_ids = np.where(~np.isin(start_ids, found_ids.id.values))[0]
chunks = chunk_ids * chunk_size
c_list = chunks.tolist()
data = [[itm, chunk_size] for itm in c_list]
lost_chunks = json.dumps(data)
if lost_chunks:
celery_logger.warning(
f"Some chunks of data failed to be inserted {lost_chunks}"
)
bulk_upload_info.update({"chunks": lost_chunks})
celery_logger.info("Will attempt to re-insert missing data...")
return self.replace(gcs_insert_missing_data.s(bulk_upload_info))
return "No missing chunks found"