-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_demo.m
228 lines (186 loc) · 8.2 KB
/
main_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
function main_demo()
% Use coherent units (msec+mV+nF+miuS+nA) unless otherwise stated
%%%% Seed the Matlab random number generator
seed = 1;
%%%% Open new (uniquely time-stamped) input files for the SpikeNet C++
% simulator.
[FID] = new_ygin_files_and_randseedHDF5(seed);
%%%% Define some basic parameters
% Time step (ms)
dt = 0.1; % 0.1 is usually small enough
% Total number of simulation steps
step_tot = 10^2;
% Create two neuron populations with 50 neurons in the 1st population
% and 10 neurons in the 2nd population.
N = [40, 10];
% Write the above basic parameters to the input file
writeBasicParaHDF5(FID, dt, step_tot, N);
%%%% Define non-parameters for the neuorn model
% For demo purpose, the values used as following are the still the
% default ones.
% If default values are to be used, there is no need to re-define them.
Cm = 0.25; % (nF) membrane capacitance
tau_ref = 2.0; % (ms) absolute refractory time
V_rt = -60.0; % (mV) reset potential
V_lk = -70.0; % (mV) leaky reversal potential
V_th = -50.0; % (mV) firing threshold
g_lk = 0.0167; % (miuS) leaky conductance (note that Cm/gL=15 ms)
for pop_ind = 1:2
writePopParaHDF5(FID, pop_ind,'Cm',Cm,'tau_ref',tau_ref,'V_rt',V_rt,...
'V_lk',V_lk,'V_th',V_th,'g_lk',g_lk);
end
%%%% Add spike-frequency adaptation to the 1st population
pop = 1;
writeSpikeFreqAdptHDF5(FID, pop);
% % Use Adam 2016 synapse model
% model_choice = 2;
% writeSynapseModelChoiceHDF5(FID, model_choice)
%%%% Define the initial condition
p_fire = [0.1 0.1]; % initial firing probabilities for both populations
% set initial V distribution to be [V_rt, V_rt + (V_th-V_rt)*r_V0]
r_V0 = [0.5 0.5];
writeInitCondHDF5(FID, r_V0, p_fire)
%%%% Add external Poissonian spike trains into the 1st population
pop = 1;
type_ext = 1; % 1 for AMPA-like syanpses
g_ext = 2*10^-3; % synaptic coupling strength (miuS)
N_ext = 1000; % No. of independent external connections onto each neuron
rate_ext = 2*ones(1, step_tot); % Poisson rate for each time step (Hz)
neurons_recv = zeros(1, N(pop));
neurons_recv(1:10) = 1; % only neurons #1-10 receive such external input
writeExtSpikeSettingsHDF5(FID, pop, type_ext, g_ext, N_ext, rate_ext,...
neurons_recv );
%%%% Add external currents (Gaussian white noise) to the 2nd population
pop = 2;
I_ext_mean = 0.5*ones(1,N(2)); % defined for each neuron (nA)
I_ext_std = 0.2*ones(1,N(2)); % defined for each neuron (nA)
writeExtCurrentSettingsHDF5(FID, pop, I_ext_mean, I_ext_std)
%%%% Add external conductances (Gaussian white noise) to the 2nd population
% The default reveral potential is V_ext = 0.0 mV.
pop = 2;
g_ext_mean = 50*10^-3*ones(1,N(2)); % defined for each neuron (muS)
g_ext_std = 0.0*ones(1,N(2)); % defined for each neuron (muS)
writeExtConductanceSettingsHDF5(FID, pop, g_ext_mean, g_ext_std)
%%%% Define runaway killer
% The computational cost of the simulation is directly proportional to
% the avearage firing rate of the network. Very often, your parameters
% may lead to biologically unrealistically high firing rate or even
% runaway activity (the highest rate possible ~1/tau_ref). To save the
% computational resources for more interesting simulation cases, it is
% advised to define the runawary killer.
% Note that the simulator will still output all the relevant data before
% the kill.
min_ms = 500; % the min simulation duration that should be guaranteed
runaway_Hz = 40; % the threshold above which the simu should be killed
Hz_ms = 200; % the window length over which the firing rate is averaged
pop = 1; % the population to be monitored by the runaway killer
writeRunawayKillerHDF5(FID, pop, min_ms, runaway_Hz, Hz_ms);
%%%% Record the basic statistics for the 1st neuron population
pop = 1;
writePopStatsRecordHDF5(FID, pop);
%%%%%%%%%%%%%%%%%%% Chemical Connections %%%%%%%%%%%%%%%%%%%%%%%
% type(1:AMAP, 2:GABAa, 3:NMDA)
% Define AMAP-like excitatory synaptic connection wtihin the 1st pop
pop_pre = 1;
pop_post = 1;
syn_type = 1; % 1 for AMPA-like synapse
g_EE = 10*10^-3; % synaptic coupling strength (miuS)
% random adjacency matrix with a wiring probability of 0.2
A = rand(N(1), N(1)) < 0.2;
[I_EE, J_EE] = find(A);
K_EE = g_EE*ones(size(I_EE)); % identical coupling strength
D_EE = rand(size(I_EE))*5; % uniformly random conduction delay [0, 5] ms
writeChemicalConnectionHDF5(FID, syn_type, pop_pre, pop_post, ...
I_EE, J_EE, K_EE, D_EE);
% Define AMAP-like excitatory synaptic connection from pop 1 to pop 2
pop_pre = 1;
pop_post = 2;
syn_type = 1; % 1 for AMPA-like synapse
g_IE = 10*10^-3; % synaptic coupling strength (miuS)
% random adjaceny matrix with a wiring probability of 0.5
A = rand(N(1), N(2)) < 0.5;
[I_IE, J_IE] = find(A);
K_IE = g_IE*ones(size(I_IE)); % identical coupling strength
D_IE = rand(size(I_IE))*5; % uniformly random conduction delay [0, 5] ms
writeChemicalConnectionHDF5(FID, syn_type, pop_pre, pop_post, ...
I_IE, J_IE, K_IE, D_IE);
% Define GABA-like excitatory synaptic connection from pop 2 to pop 1
pop_pre = 2;
pop_post = 1;
syn_type = 2; % 2 for GABA-like synapse
g_EI = 10*10^-3; % synaptic coupling strength (miuS)
% random adjaceny matrix with a wiring probability of 0.5
A = rand(N(2), N(1)) < 0.5;
[I_EI, J_EI] = find(A);
K_EI = g_EI*ones(size(I_EI)); % identical coupling strength
D_EI = rand(size(I_EI))*5; % uniformly random conduction delay [0, 5] ms
writeChemicalConnectionHDF5(FID, syn_type, pop_pre, pop_post, ...
I_EI, J_EI, K_EI, D_EI);
% Define GABA-like excitatory synaptic connection within pop 2
pop_pre = 2;
pop_post = 2;
syn_type = 2; % 2 for GABA-like synapse
g_II = 20*10^-3; % synaptic coupling strength (miuS)
% random adjaceny matrix with a wiring probability of 0.5
A = rand(N(2), N(2)) < 0.5;
[I_II, J_II] = find(A);
K_II = g_II*ones(size(I_II)); % identical coupling strength
D_II = rand(size(I_II))*5; % uniformly random conduction delay [0, 5] ms
writeChemicalConnectionHDF5(FID, syn_type, pop_pre, pop_post, ...
I_II, J_II, K_II, D_II);
%%%%%%%%%%%%%%%%%%% Chemical Connections Done %%%%%%%%%%%%%%%%%%%%%%%
%%%% Use an existing synapse connectivity definition file instead of
% generating a new one:
% (The feature needs to be written)
%%%% Define non-default synapse parameters
writeSynParaHDF5(FID, 'tau_decay_GABA', 3);
% "help writeSynPara" to see all the parameter names and default values
%%%% Add short-term depression to the synapses with the 1st population
pop_pre = 1;
pop_post = 1;
step_start = round(step_tot/3); % Turn on STD at this time step
writeSTDHDF5(FID, pop_pre, pop_post, step_start);
%%%% Add inhibitory STDP to the synapses from pop 2 to pop 1
pop_pre = 2;
pop_post = 1;
% Turn on inhibitory STDP at a certain time step
step_start = round(step_tot/3*2);
writeInhSTDPHDF5(FID, pop_pre, pop_post, step_start);
%%%% Record the basic statistics for the excitatory synapses within
% the 1st neuron population
pop_pre = 1;
pop_post = 1;
syn_type = 1; % 1 for AMPA-like synapse
writeSynStatsRecordHDF5(FID, pop_pre, pop_post, syn_type);
%%%% Sample detailed time serious data from the 1st population
pop = 1;
sample_neuron = 1:10:N(1); % sample every 10th neuron
sample_steps = 1:2:step_tot; % sample every 2nd time step
sample_data_type = [1,1,1,1,0,0,1,0];
% The logical vector above corresponds to
% [V,I_leak,I_AMPA,I_GABA,I_NMDA,I_GJ,I_ext, I_K]
writeNeuronSamplingHDF5(FID, pop, sample_data_type, ...
sample_neuron, sample_steps)
%%%% Optional: record explanatory variables (scalars only)
% They will also be used in pro-processsing for auto-generated comments
discard_transient = 0; % transient period data to be discarded (ms)
comment1 = 'This is a demo.';
comment2 = ['If you have any question regarding SpikeNet,'...
'please contact Yifan Gu ([email protected]).'];
writeExplVarHDF5(FID, 'discard_transient', discard_transient, ...
'g_EE', g_EE, ...
'g_EI', g_EI, ...
'g_IE', g_IE, ...
'g_II', g_II, ...
'g_ext', g_ext, ...
'N_ext', N_ext, ...
'rate_ext', rate_ext,...
'comment1', comment1, 'comment2', comment2);
%%%% append this matlab file to the input file for future reference
appendThisMatlabFileHDF5(FID)
end
function appendThisMatlabFileHDF5(FID)
% need to coopy and past the following code into the file to be appended!
text = fileread([mfilename('fullpath'),'.m']);
hdf5write(FID,'/config/MATLAB/config.m',text,'WriteMode','append');
end