-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_cnn.py
365 lines (274 loc) · 14.7 KB
/
train_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 15 14:42:19 2019
@author: zingman
"""
# -----------------------------------------------------------------------------
# classifies histological images into two categories healthy/non-healthy using
# tiled patch images saved on the hard drive
# -----------------------------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from utils.image_dataset_reader import HistImagesDataset, samples_per_location_from_samples_per_class
import torch.optim as optim
import matplotlib.pyplot as plt
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import shutil
from time import perf_counter
import os
import datetime
import copy
import time
from utils.data_processing import set_seed
import models.pretrained_networks as HistoModel
from utils.timed_input import limited_time_input
import logging
from models.losses import CenterLoss
import argparse
from utils.imports import show_configuration, save_configuration, \
pickle_configuraton_as_dictionary, update_configuration
from sklearn.metrics import confusion_matrix
import seaborn as sn
import pandas as pd
#plt.ion()
def evaluate_model(val_loader, loss_fun, n_samples_val, model_skel):
str_labels = val_loader.dataset.str_labels
# string labels are encoded by sequential integer labels beginning from 0
integer_labels = list(range(len(str_labels)))
final_val_loss, final_val_acc, conf_mat = validation(model_skel, iter(val_loader), loss_fun, n_samples=n_samples_val, confusion=True, integer_labels=integer_labels)
print('validation accuracy of the model: {:.4f}, validation loss of the model: {:.4f}'.format(final_val_acc,
final_val_loss))
# visualize confusion matrix
df_cf = pd.DataFrame(conf_mat, index=str_labels, columns=str_labels)
plt.figure(figsize=(15, 10))
sn.heatmap(df_cf, annot=True)
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.title('accuracy: {}'.format(final_val_acc))
def validation(model, data_iter, loss_fun, n_samples=None, centerloss_fun=None, ce_weight=1.0, cl_weight=0.0, confusion=False, integer_labels=None):
"""
:param model: model to be validated
:param data_iter: data iterator (use iter(data_set) or iter(data_loader)). The iterator can be infinite.
If iterator is finite and it is exhausted before n_samples were generated, warning is printed out
:param n_samples: n_samples to be used for validating the model
:param confusion: calculate also confusion matrix
:return: accuracy, loss values, and confusion matrix if requested
"""
if confusion and integer_labels is None:
print("Error: when confusion matrix need to be calculated, integer labels must be provided")
raise
if not n_samples:
n_samples = np.inf
model.eval()
val_loss = torch.tensor(0.0, device=device)
n_pred = torch.tensor(0.0, device=device)
n_processed = 0.0
conf_mat = None
with torch.no_grad():
counter = 0
# for samples in data_loader:
while n_processed < n_samples:
try:
samples = next(data_iter)
except StopIteration:
logging.warning(
'finite iterator with {} images was provided, it was exhausted before required {} were generated'.format(n_processed, n_samples))
break
images = samples['image'].to(device)
int_labels = samples['label']
n_processed += len(int_labels)
int_labels = int_labels.to(device)
outputs = model(images)
pedictions = outputs['categories']
entropy_loss = loss_fun(pedictions, int_labels)
if (cl_weight != 0) and (centerloss_fun is not None):
features = outputs['pooled_codes']
center_loss = centerloss_fun(features, int_labels)
loss = ce_weight * entropy_loss + cl_weight * center_loss
else:
loss = entropy_loss
predicted_values = torch.max(pedictions, 1)[1]
n_pred += torch.sum(predicted_values == int_labels)
val_loss += loss
if confusion:
if counter > 0:
conf_mat += confusion_matrix(int_labels.cpu().numpy(), predicted_values.cpu().numpy(), labels=integer_labels)
else:
conf_mat = confusion_matrix(int_labels.cpu().numpy(), predicted_values.cpu().numpy(), labels=integer_labels)
counter += 1
loss_value = val_loss.item() / counter
accuracy = n_pred.item() / n_processed
return loss_value, accuracy, conf_mat
def train_epoch(model, data_loader, optimizer, loss_fun, tb_writer, iter_step_show=10, centerloss=None, ce_weight=1.0, cl_weight=0.0):
try:
len_dataset = len(data_loader)
except TypeError:
len_dataset = float("inf")
model.train()
train_loss = 0.0
counter = 0
progress = tqdm(data_loader, desc="Batch loss: ", total=len_dataset, disable=False)
for samples in progress:
try:
train_epoch.iteration += 1
except AttributeError:
train_epoch.iteration = 0
images = samples['image'].to(device)
int_labels = samples['label']
int_labels = int_labels.to(device)
optimizer.zero_grad()
outputs = model(images)
predictions = outputs['categories']
entropy_loss_criterion = loss_fun(predictions, int_labels)
if (cl_weight != 0) and (centerloss is not None):
features = outputs['pooled_codes']
center_loss_criterion = centerloss(features, int_labels)
loss = ce_weight * entropy_loss_criterion + cl_weight * center_loss_criterion
else:
loss = entropy_loss_criterion
loss.backward()
optimizer.step()
train_loss += loss.item()
if counter % iter_step_show == 0:
progress.set_description("Batch loss: {:.4f}".format(loss.item()))
tb_writer.add_scalar('Batch_loss', loss.item(), train_epoch.iteration)
counter += 1
epoch_loss = train_loss / counter
return epoch_loss
#-----------------------------------------------------------------------------------------------------------------------
# ----------------------------------------main code---------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
assert torch.cuda.is_available(), "GPU is not available"
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(description='training cnn')
cfg = update_configuration(parser)
if not cfg.description:
cfg.description = limited_time_input("Please enter description of an experiment...", 60)
print('\n')
show_configuration(cfg)
print('\n')
device = torch.device(cfg.device_name)
set_seed(cfg.seed_number)
t_start = perf_counter()
# defining paths and creating output directories
output_path = cfg.path_to_results + '/' + cfg.string_time
output_path_tb = cfg.path_to_results + '_tb/' + cfg.string_time
os.makedirs(output_path_tb)
os.makedirs(output_path)
tb_writer = SummaryWriter(output_path_tb)
file_handler = logging.FileHandler(os.path.join(output_path, 'training_cnn.log'))
logging.root.addHandler(file_handler)
tr_resize = transforms.Resize(cfg.patch_size)
tr_normalize = transforms.Normalize(mean=cfg.normalize_mean, std=cfg.normalize_std)
bc_jitter = transforms.ColorJitter(brightness=cfg.aug_brightness, contrast=cfg.aug_contrast)
transforms_seq_train = transforms.Compose([transforms.CenterCrop(cfg.patch_size), bc_jitter, transforms.ToTensor(), tr_normalize])
transforms_seq_val = transforms.Compose([transforms.CenterCrop(cfg.patch_size), transforms.ToTensor(), tr_normalize])
n_samples_train_per_location = samples_per_location_from_samples_per_class(*cfg.path_to_tissues, samples_per_class=cfg.n_samples_train_per_class)
images_dataset = HistImagesDataset(*cfg.path_to_tissues, n_samples=n_samples_train_per_location, transform=transforms_seq_train, repetition=True)
n_classes = len(images_dataset.str_labels)
assert cfg.number_of_classes == n_classes
images_validation, images_train = images_dataset.split_set(cfg.n_samples_val, transform_validation=transforms_seq_val)
if getattr(cfg, 'mixup_classes', False):
images_train.prepare_mixup(cfg.mixup_classes)
train_loader = DataLoader(images_train, batch_size=cfg.batch_size, num_workers=cfg.num_workers, shuffle=True, pin_memory=False)
val_loader = DataLoader(images_validation, batch_size=cfg.batch_size, num_workers=cfg.num_workers, pin_memory=False)
NetworkModel = getattr(HistoModel, cfg.model_name)
model = NetworkModel(n_classes=n_classes, dev=device).to(device)
try:
logging.info("training dataset consist of {} images".format(len(images_train)))
logging.info("validation dataset consist of {} images".format(len(images_validation)))
except TypeError:
logging.info('iterable dataset is used, the size cannot be determined a priori')
# ---------------------------
# -----------training ------
# ----------------------------
if cfg.centerloss_classes is not None:
if cfg.centerloss_classes == 'all':
chosen_class_int = None
elif isinstance(cfg.centerloss_classes, (list, tuple)):
chosen_class_int = []
for lb in cfg.centerloss_classes:
chosen_class_int.append(images_train.get_int_label(lb))
elif isinstance(cfg.centerloss_classes, str):
chosen_class_int = images_train.get_int_label(cfg.centerloss_classes)
else:
assert False, 'centerloss_classes in configuration file is not valid'
metric_loss = CenterLoss(num_classes=n_classes, feat_dim=model.fv_length(), device=device, constrained_classes=chosen_class_int, mu=0.5)
logging.info('chosen classes in centerloss: {} ({})'.format(cfg.centerloss_classes, chosen_class_int))
else:
metric_loss = None
loss_fun = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=cfg.model_lr, momentum=cfg.ce_momentum)
best_val_acc = 0.0
best_model_wts = copy.deepcopy(model.state_dict())
n_trained_param = model.count_parameters()
logging.info("number of parameters to be trained is {}".format(n_trained_param))
t_start_epoch = perf_counter()
for epoch in range(cfg.num_epochs):
logging.info('Epoch {}/{}, training ...'.format(epoch, cfg.num_epochs - 1))
epoch_training_av_loss = train_epoch(model, train_loader, optimizer, loss_fun, tb_writer, cfg.train_step_show, centerloss=metric_loss, ce_weight=cfg.ce_weight, cl_weight=cfg.cl_weight)
with torch.cuda.device(cfg.device_name): # by default cuda:0 is used
torch.cuda.empty_cache()
logging.info('validating on a separate validation dataset...')
epoch_val_loss, epoch_val_acc, _ = validation(model, iter(val_loader), loss_fun, n_samples=cfg.n_samples_val, centerloss_fun=metric_loss, ce_weight=cfg.ce_weight, cl_weight=cfg.cl_weight)
with torch.cuda.device(cfg.device_name): # by default cuda:0 is used
torch.cuda.empty_cache()
logging.info('validating on train dataset...')
epoch_train_loss, epoch_train_acc, _ = validation(model, iter(train_loader), loss_fun, n_samples=cfg.n_samples_val, centerloss_fun=metric_loss, ce_weight=cfg.ce_weight, cl_weight=cfg.cl_weight)
with torch.cuda.device(cfg.device_name): # by default cuda:0 is used
torch.cuda.empty_cache()
if epoch_val_acc > best_val_acc:
best_val_acc = epoch_val_acc
best_model_wts = copy.deepcopy(model.state_dict())
tb_writer.add_scalar('average_training_loss', epoch_training_av_loss, epoch)
tb_writer.add_scalar('validation_loss', epoch_val_loss, epoch)
tb_writer.add_scalar('validation_accuracy', epoch_val_acc, epoch)
tb_writer.add_scalar('training_loss', epoch_train_loss, epoch)
tb_writer.add_scalar('training_accuracy', epoch_train_acc, epoch)
logging.info('Training loss: {:.4f}'.format(epoch_train_loss))
logging.info('Training accuracy: {:.4f}'.format(epoch_train_acc))
logging.info('Validation loss: {:.4f}'.format(epoch_val_loss))
logging.info('Validation accuracy: {:.4f}'.format(epoch_val_acc))
logging.info('-' * 10)
if epoch == 0:
save_configuration(cfg, os.path.join(output_path, 'training_cnn_configuration.txt'))
with open(os.path.join(output_path, 'training_cnn_configuration.txt'), 'a') as fh:
print(model, file=fh)
# saving the resulted model
model_file_name = cfg.model_name + '_epoch: {}_acc{:.4f}'.format(epoch, epoch_val_acc)
saved_model_path_full = os.path.join(output_path, model_file_name + '.pt')
torch.save(model.state_dict(), saved_model_path_full)
logging.info('current model was saved to {}'.format(saved_model_path_full))
t_end_epoch = perf_counter()
logging.info('training the epoch took {} sec'.format(t_end_epoch - t_start_epoch))
t_start_epoch = t_end_epoch
tb_writer.close()
t_end = perf_counter()
logging.info('training took {} sec'.format(t_end - t_start))
# saving the best model
model_file_name = cfg.model_name + '_' + cfg.data_staining + '_' + cfg.organ + '_' + cfg.animal + '_' + cfg.string_time + '_acc{:.4f}'.format(best_val_acc)
saved_model_path_full = os.path.join(output_path, model_file_name + '.pt')
torch.save(best_model_wts, saved_model_path_full)
logging.info('best model was saved to {}'.format(saved_model_path_full))
model_for_evaluation = NetworkModel(n_classes=n_classes, path_trained_model=saved_model_path_full, dev=device).to(device)
evaluate_model(val_loader, loss_fun, cfg.n_samples_val, model_for_evaluation)
plt.savefig(os.path.join(output_path, 'confusion_matrix_best_model.png'))
logging.info('tensorboard log was saved to {}'.format(output_path_tb))
# save configuration that can be read together with the models it was used to train
saved_configuration_path_full = os.path.join(output_path, model_file_name + '_training_configuration.pkl')
pickle_configuraton_as_dictionary(cfg, saved_configuration_path_full )
logging.info('pickle configuration file was saved to {}'.format(saved_configuration_path_full ))
if hasattr(cfg, 'test_run') and cfg.test_run is True:
print('output stored in {} and {} will be removed'.format(output_path, output_path_tb))
answer = input('Do you really want to remove these folders?')
if answer in ('yes', 'y', 'Y', 'YES', 'Yes'):
print('output stored in {} and {} are being removed'.format(output_path, output_path_tb))
time.sleep(5)
shutil.rmtree(output_path_tb)
shutil.rmtree(output_path)
print('output stored in {} and {} were removed'.format(output_path, output_path_tb))