-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDESCRIPTION
63 lines (63 loc) · 2.5 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Package: BayesianMCPMod
Title: Simulate, Evaluate, and Analyze Dose Finding Trials with Bayesian
MCPMod
Version: 1.0.2
Authors@R: c(
person("Boehringer Ingelheim Pharma GmbH & Co. KG", role = c("cph", "fnd")),
person("Stephan", "Wojciekowski", , "[email protected]", role = c("aut", "cre")),
person("Lars", "Andersen", , "[email protected]", role = "aut"),
person("Sebastian", "Bossert", , "[email protected]", role = "aut"),
person("Steven", "Brooks", , "[email protected]", role = "ctb"),
person("Jonas", "Schick", , "[email protected]", role = "ctb"),
person("Gina", "Kleibrink", , "[email protected]", role = "ctb")
)
Description: Bayesian MCPMod (Fleischer et al. (2022)
<doi:10.1002/pst.2193>) is an innovative method that improves the
traditional MCPMod by systematically incorporating historical data,
such as previous placebo group data. This R package offers functions
for simulating, analyzing, and evaluating Bayesian MCPMod trials with
normally distributed endpoints. It enables the assessment of trial
designs incorporating historical data across various true
dose-response relationships and sample sizes. Robust mixture prior
distributions, such as those derived with the Meta-Analytic-Predictive
approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be
specified for each dose group. Resulting mixture posterior
distributions are used in the Bayesian Multiple Comparison Procedure
and modeling steps. The modeling step also includes a weighted model
averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>).
Estimated dose-response relationships can be bootstrapped and
visualized.
License: Apache License (>= 2)
URL: https://boehringer-ingelheim.github.io/BayesianMCPMod/, https://github.com/Boehringer-Ingelheim/BayesianMCPMod
BugReports: https://github.com/Boehringer-Ingelheim/BayesianMCPMod/issues
Depends:
R (>= 4.2)
Imports:
checkmate,
DoseFinding (>= 1.1-1),
ggplot2,
nloptr,
RBesT,
stats
Suggests:
clinDR,
data.table,
doFuture,
quarto,
doRNG,
dplyr,
kableExtra,
knitr,
MCPModPack,
reactable,
rmarkdown,
spelling,
testthat (>= 3.0.0),
tibble
VignetteBuilder: quarto
Config/testthat/edition: 3
Encoding: UTF-8
Language: en-US
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1