-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCFM.py
47 lines (35 loc) · 1.35 KB
/
CFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import matplotlib.pyplot as plt
import torch
import torchdiffeq
import torchsde
from torchdyn.core import NeuralODE
from torchvision import datasets, transforms
from torchvision.transforms import ToPILImage
from torchvision.utils import make_grid
from tqdm import tqdm
#主要模块
from torchcfm.conditional_flow_matching import *
from torchcfm.models.unet import UNetModel
#循环主逻辑:
sigma = 0.0
model = UNetModel(
dim=(1, 28, 28), num_channels=32, num_res_blocks=1, num_classes=10, class_cond=True
).to(device)
optimizer = torch.optim.Adam(model.parameters())
FM = ConditionalFlowMatcher(sigma=sigma)
# Users can try target FM by changing the above line by
# FM = TargetConditionalFlowMatcher(sigma=sigma)
node = NeuralODE(model, solver="dopri5", sensitivity="adjoint", atol=1e-4, rtol=1e-4)
for epoch in range(n_epochs):
for i, data in enumerate(train_loader):
optimizer.zero_grad()
x1 = data[0].to(device) #真实图像
y = data[1].to(device) #标签
x0 = torch.randn_like(x1) #噪声
t, xt, ut = FM.sample_location_and_conditional_flow(x0, x1) #sample t时刻 拿到向量场
vt = model(t, xt, y) #预测向量场
loss = torch.mean((vt - ut) ** 2)
loss.backward()
optimizer.step()
print(f"epoch: {epoch}, steps: {i}, loss: {loss.item():.4}", end="\r")