-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHippo.html
585 lines (513 loc) · 21.2 KB
/
Hippo.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="JReceveur" />
<title>16S data analysis example</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/default.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlightingOnLoad(); }, 0);
}
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 60px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 65px;
margin-top: -65px;
}
.section h2 {
padding-top: 65px;
margin-top: -65px;
}
.section h3 {
padding-top: 65px;
margin-top: -65px;
}
.section h4 {
padding-top: 65px;
margin-top: -65px;
}
.section h5 {
padding-top: 65px;
margin-top: -65px;
}
.section h6 {
padding-top: 65px;
margin-top: -65px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<div class="container-fluid main-container">
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
padding-left: 25px;
text-indent: 0;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Benbow Lab</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Tutorials
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Phylogeny.html">Phylogeny from VCF file</a>
</li>
<li>
<a href="Hippo.html">16S Analysis Insect communities</a>
</li>
<li>
<a href="Bswab.html">Spatial changes in human microbiome</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">16S data analysis example</h1>
<h4 class="author"><em>JReceveur</em></h4>
<h4 class="date"><em>May 8, 2017</em></h4>
</div>
<div id="package-install" class="section level1">
<h1>Package Install</h1>
<p>If you need to install the packages remove the #, once the packages are installed, you do not need to run this step again</p>
<pre class="r"><code>#source('http://bioconductor.org/biocLite.R')
#biocLite('phyloseq')
#install.packages("ggplot2")
#install.packages("vegan")
packageVersion('phyloseq')</code></pre>
<pre><code>## [1] '1.22.3'</code></pre>
</div>
<div id="data-import" class="section level1">
<h1>Data import</h1>
<p>Download the data file. You can either browse for the datafile with the first import command(just remove the #), or specify the path name (Yours will depend on where you saved your file).The datafile already has the metadata, taxonomy, and abundances joined together for all taxonomic levels. Load the phyloseq package and ggplots2 and set the plotting theme.</p>
<pre class="r"><code>library(phyloseq)
library(ggplot2)
library(vegan)</code></pre>
<pre><code>## Loading required package: permute</code></pre>
<pre><code>## Loading required package: lattice</code></pre>
<pre><code>## This is vegan 2.4-4</code></pre>
<pre class="r"><code>theme_set(theme_bw())
#biom=import_biom(file.choose(),parseFunction=parse_taxonomy_greengenes)
biom=import_biom('C:\\Users\\Joe Receveur\\Documents\\GitHub\\WallaceHippo\\hipp.biom',parseFunction=parse_taxonomy_greengenes)
biom</code></pre>
<pre><code>## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 238 taxa and 14 samples ]
## sample_data() Sample Data: [ 14 samples by 4 sample variables ]
## tax_table() Taxonomy Table: [ 238 taxa by 11 taxonomic ranks ]</code></pre>
<p>Since the .biom file already has metadata added, lets check and see what the samples are named and what variables are in the metadata.</p>
<pre class="r"><code>sample_names(biom)</code></pre>
<pre><code>## [1] "Hipp5" "Hipp8" "Hipp6" "Hipp11" "Hipp1" "Hipp9" "Hipp13"
## [8] "Hipp14" "Hipp10" "Hipp3" "Hipp12" "Hipp2" "Hipp4" "Hipp7"</code></pre>
<pre class="r"><code>sample_variables(biom)</code></pre>
<pre><code>## [1] "BarcodeSequence" "Description" "LinkerPrimerSequence"
## [4] "Species"</code></pre>
<p>Since one of the sample variables is Species, we’ll remove some confusion since there is also a taxonomic rank called Species by creating a new variable “Bird Species” and look at the metadata again just to be sure everything matches up.</p>
<pre class="r"><code>sample_data(biom)$BirdSpecies=sample_data(biom)$Species
sample_variables(biom)</code></pre>
<pre><code>## [1] "BarcodeSequence" "Description" "LinkerPrimerSequence"
## [4] "Species" "BirdSpecies"</code></pre>
<pre class="r"><code>#sample_data(biom) use this command to see all the metadata</code></pre>
</div>
<div id="visualizing-the-raw-sample-data" class="section level1">
<h1>Visualizing the raw sample data</h1>
<p>Before we try to do anything, its probably a good idea to look at a plot of the raw data. Once you plot the data, you’ll see that the vast majority of the samples are from the family Enterobacteriaceae and that the total abundances for the samples don’t add up. We’ll change that in a bit. You’ll also see a warning message about the species variable being changed but you can ignore it.</p>
<pre class="r"><code>plot_bar(biom, "BirdSpecies","Abundance", "Family")</code></pre>
<pre><code>## Warning in psmelt(physeq): The sample variables:
## Species
## have been renamed to:
## sample_Species
## to avoid conflicts with taxonomic rank names.</code></pre>
<p><img src="Hippo_files/figure-html/unnamed-chunk-5-1.png" width="672" /></p>
<div id="removing-enterobacteria" class="section level2">
<h2>Removing Enterobacteria</h2>
<p>Now we’ll look at the data with Enterobacteria removed. When you run the noentero command, you can see a difference in the taxa in the OTU table compared to previously. If you would like a subset only from one family use the command Family==“Staphylococcaceae” for example.</p>
<pre class="r"><code>noentero=subset_taxa(biom, Family!="Enterobacteriaceae")
noentero</code></pre>
<pre><code>## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 126 taxa and 14 samples ]
## sample_data() Sample Data: [ 14 samples by 5 sample variables ]
## tax_table() Taxonomy Table: [ 126 taxa by 11 taxonomic ranks ]</code></pre>
<p>When we plot the data with Enterobacteriacea removed, notice how much smaller the abundance values are than the previous plot and the differences in taxa compared to the biom file.</p>
<pre class="r"><code>plot_bar(noentero, "BirdSpecies","Abundance", "Family")</code></pre>
<pre><code>## Warning in psmelt(physeq): The sample variables:
## Species
## have been renamed to:
## sample_Species
## to avoid conflicts with taxonomic rank names.</code></pre>
<p><img src="Hippo_files/figure-html/unnamed-chunk-7-1.png" width="672" /></p>
</div>
</div>
<div id="relative-abundances" class="section level1">
<h1>Relative Abundances</h1>
<p>Now we’ll normalize each sample to turn it into relative abundances for each sample. The second transform sample counts will turn the filtered data back into 100% abundances, if you leave it out and then plot, its a good way to see how much abundance the filtering is removing.</p>
<pre class="r"><code>Hipp = transform_sample_counts(noentero, function(x) x / sum(x) )
Hipp = filter_taxa(Hipp, function(x) mean(x) > 1e-2, TRUE)
HippFiltered = transform_sample_counts(Hipp, function(x) x / sum(x) )
HippFiltered</code></pre>
<pre><code>## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 26 taxa and 14 samples ]
## sample_data() Sample Data: [ 14 samples by 5 sample variables ]
## tax_table() Taxonomy Table: [ 26 taxa by 11 taxonomic ranks ]</code></pre>
<pre class="r"><code>sample_variables(HippFiltered)</code></pre>
<pre><code>## [1] "BarcodeSequence" "Description" "LinkerPrimerSequence"
## [4] "Species" "BirdSpecies"</code></pre>
<p>With the next bit of code, you’ll see that the Abundances are in multiples of one, it just depends on how many samples there was from each bird species.</p>
<pre class="r"><code>plot_bar(HippFiltered,"BirdSpecies", "Abundance","Family")</code></pre>
<pre><code>## Warning in psmelt(physeq): The sample variables:
## Species
## have been renamed to:
## sample_Species
## to avoid conflicts with taxonomic rank names.</code></pre>
<p><img src="Hippo_files/figure-html/unnamed-chunk-9-1.png" width="672" /></p>
<p>Now we’ll merge together all the samples from within a bird species to get an average.The merge function renames the samples by the variable Species so we have to add it back in as a sample variable after merging. You’ll see a warning message NAS introduced… after the first step but the second step “repairs” the metadata.</p>
<pre class="r"><code>Merged=merge_samples(HippFiltered, "Species")
sample_data(Merged)$BirdSpecies <- factor(sample_names(Merged))
Merged=transform_sample_counts(Merged,function(x) 100 * x/sum(x))</code></pre>
<p>Now we’ll plot relative abundance by each bird species.</p>
<pre class="r"><code>plot_bar(Merged, "BirdSpecies", "Abundance", "Family")</code></pre>
<pre><code>## Warning in psmelt(physeq): The sample variables:
## Species
## have been renamed to:
## sample_Species
## to avoid conflicts with taxonomic rank names.</code></pre>
<p><img src="Hippo_files/figure-html/unnamed-chunk-11-1.png" width="672" /></p>
</div>
<div id="nmds-plots" class="section level1">
<h1>NMDS plots</h1>
<p>Now, we’ll make some NMDS plots of the data using bray curtis. First, we need to run the ordination.For more detailed distance options see <a href="https://joey711.github.io/phyloseq/distance.html" class="uri">https://joey711.github.io/phyloseq/distance.html</a></p>
<pre class="r"><code>Hipp.ord=ordinate(HippFiltered, "NMDS", "bray")</code></pre>
<pre><code>## Run 0 stress 0.1237196
## Run 1 stress 0.1237181
## ... New best solution
## ... Procrustes: rmse 0.003568905 max resid 0.007614017
## ... Similar to previous best
## Run 2 stress 0.1475538
## Run 3 stress 0.12154
## ... New best solution
## ... Procrustes: rmse 0.2025603 max resid 0.3841718
## Run 4 stress 0.1215398
## ... New best solution
## ... Procrustes: rmse 7.32784e-05 max resid 0.0001479211
## ... Similar to previous best
## Run 5 stress 0.1237192
## Run 6 stress 0.1215381
## ... New best solution
## ... Procrustes: rmse 0.000430563 max resid 0.001115534
## ... Similar to previous best
## Run 7 stress 0.1237198
## Run 8 stress 0.1543166
## Run 9 stress 0.1237179
## Run 10 stress 0.1359682
## Run 11 stress 0.1237173
## Run 12 stress 0.1215384
## ... Procrustes: rmse 0.00012988 max resid 0.0002870344
## ... Similar to previous best
## Run 13 stress 0.1484288
## Run 14 stress 0.1215409
## ... Procrustes: rmse 0.005419231 max resid 0.01409039
## Run 15 stress 0.1557357
## Run 16 stress 0.1215397
## ... Procrustes: rmse 0.0002952179 max resid 0.0007848221
## ... Similar to previous best
## Run 17 stress 0.1557346
## Run 18 stress 0.121541
## ... Procrustes: rmse 0.005429454 max resid 0.01412899
## Run 19 stress 0.1215371
## ... New best solution
## ... Procrustes: rmse 0.004404137 max resid 0.01146156
## Run 20 stress 0.1237185
## *** No convergence -- monoMDS stopping criteria:
## 20: stress ratio > sratmax</code></pre>
<p>Now we’ll plot the samples by Bird Species</p>
<pre class="r"><code>plot_ordination(HippFiltered,Hipp.ord,type="samples",color="BirdSpecies")+geom_point(size=5)+ggtitle("NMDS by Bird Species")</code></pre>
<p><img src="Hippo_files/figure-html/unnamed-chunk-13-1.png" width="672" /></p>
</div>
<div id="plot-heatmap" class="section level1">
<h1>plot heatmap</h1>
<p>Now we’ll plot a heatmap by Bird Species and sort the samples as well. The default is to group samples by their distances, so if you want to see them by distance, remove the sample.order= command. You’ll see warning about infinite values as well but for now it can be ignored.</p>
<pre class="r"><code>plot_heatmap(HippFiltered, "NMDS","bray","BirdSpecies", "Family", sample.order="BirdSpecies")</code></pre>
<pre><code>## Warning in psmelt(physeq): The sample variables:
## Species
## have been renamed to:
## sample_Species
## to avoid conflicts with taxonomic rank names.</code></pre>
<pre><code>## Warning: Transformation introduced infinite values in discrete y-axis</code></pre>
<p><img src="Hippo_files/figure-html/unnamed-chunk-14-1.png" width="672" /></p>
</div>
<div id="permanova" class="section level1">
<h1>PERMANOVA</h1>
<p>For running a PERMANOVA we will need some functions from the vegan package</p>
<pre class="r"><code>Hippdist=phyloseq::distance(HippFiltered, "bray")</code></pre>
<p>If we want to test for significant differences between bird species.For this preliminary dataset we probably don’t have enough power to see anything, but heres the code anyway.</p>
<pre class="r"><code>adonis(Hippdist ~ BirdSpecies, as(sample_data(HippFiltered), "data.frame"))</code></pre>
<pre><code>##
## Call:
## adonis(formula = Hippdist ~ BirdSpecies, data = as(sample_data(HippFiltered), "data.frame"))
##
## Permutation: free
## Number of permutations: 999
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
## BirdSpecies 4 0.8402 0.21005 0.65247 0.2248 0.964
## Residuals 9 2.8973 0.32193 0.7752
## Total 13 3.7375 1.0000</code></pre>
</div>
<div id="network-plot" class="section level1">
<h1>Network plot</h1>
<p>Heres a simple network plot of the bird samples showing the distance between samples.</p>
<pre class="r"><code>plot_net(HippFiltered, color="BirdSpecies")</code></pre>
<p><img src="Hippo_files/figure-html/unnamed-chunk-17-1.png" width="672" /></p>
<p>For more info on the phyloseq package visit joey711.github.io/phyloseq/</p>
<pre><code>## R version 3.4.2 (2017-09-28)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 16299)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] vegan_2.4-4 lattice_0.20-35 permute_0.9-4 ggplot2_2.2.1
## [5] phyloseq_1.22.3
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.13 compiler_3.4.2 plyr_1.8.4
## [4] XVector_0.18.0 iterators_1.0.8 tools_3.4.2
## [7] zlibbioc_1.24.0 digest_0.6.12 tibble_1.3.4
## [10] jsonlite_1.5 evaluate_0.10.1 nlme_3.1-131
## [13] rhdf5_2.22.0 gtable_0.2.0 mgcv_1.8-20
## [16] pkgconfig_2.0.1 rlang_0.1.4 igraph_1.1.2
## [19] Matrix_1.2-11 foreach_1.4.3 yaml_2.1.14
## [22] parallel_3.4.2 stringr_1.2.0 knitr_1.17
## [25] cluster_2.0.6 Biostrings_2.46.0 S4Vectors_0.16.0
## [28] IRanges_2.12.0 multtest_2.34.0 stats4_3.4.2
## [31] rprojroot_1.2 ade4_1.7-8 grid_3.4.2
## [34] Biobase_2.38.0 data.table_1.10.4-3 survival_2.41-3
## [37] rmarkdown_1.7 reshape2_1.4.2 magrittr_1.5
## [40] MASS_7.3-47 splines_3.4.2 backports_1.1.1
## [43] scales_0.5.0 codetools_0.2-15 htmltools_0.3.6
## [46] BiocGenerics_0.24.0 biomformat_1.6.0 ape_5.0
## [49] colorspace_1.3-2 labeling_0.3 stringi_1.1.5
## [52] lazyeval_0.2.1 munsell_0.4.3</code></pre>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>